

# Forensic Analysis of the Human Clavicle: Evaluating the Accuracy of Structured Light Scanning in a Forensic Context



Ellie M. Horne<sup>1</sup>, Hunter Auck<sup>1</sup>, Jennifer Z. Paxton<sup>1</sup>, Stephen J. Maclean<sup>1</sup>

# <sup>1</sup>Anatomy@Edinburgh, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine,

University of Edinburgh, United Kingdom

### Introduction

- Forensic analysis requires direct access to remains may not be possible due to location, lack of storage or damage
- Structured light scanning (SLS) could be used to generate digital representations of remains evidence is needed to assess the accuracy of these models before they can be implemented.
- Our aim is to evaluate the applicability of SLS in a forensic context by comparing the forensic analysis of physical and digital clavicles.
- To test this, we focused on three main aspects: testing method repeatability, evaluating scanner accuracy and determining the applicability of the technique within forensics.

## Materials and Methods

#### Scanning Protocols

- 15 clavicles were selected from the Osteology Teaching Collection within the University of Edinburgh
- Clavicles were scanned using the Einscan Pro-HD and Artec Space Spider
- A post-processing workflow was determined in order to create a repeatable process
- 1<sup>st</sup> observer generated 4 scans per bone [2 per scanner]
- Second observer generated 2 scans per bone [1 per scanner]

#### **Measurement Tools and Protocols**

- Physical metric analyses were carried out using Vernier/digital sliding callipers, a measuring tape and an osteometric board. (1)
- Physical observations were carried out directly on the bones. (2, 3)
- Digital metric and morphological data was collected within Artec Studio 18.
- Measurements and observations were repeated three times on each bone/model.



**Figure 1 – Six clavicular measurements used for metric analysis.** M1: Maximum clavicular length; M2: Midshaft circumference; M3: Minimum midshaft diameter; M4: Maximum midshaft diameter; M5: Maximum width of sternal end; M6: Maximum width of the acromial surface. [Image approval: ANATED\_0031]

#### **Method Repeatability**

- Intra-rater and inter-rater ICC analysis shows that metric analysis is excellent (ICC > 0.9) in all comparisons besides M4 Inter-observer physical measurements, which showed very good agreement (ICC = 0.888).
- This demonstrates that the metric measurement protocols are repeatable.

|             | Physical Results          |                           | Digital Results           |                           |  |
|-------------|---------------------------|---------------------------|---------------------------|---------------------------|--|
| Measurement | Intra-<br>Observer<br>ICC | Inter-<br>Observer<br>ICC | Intra-<br>Observer<br>ICC | Inter-<br>Observer<br>ICC |  |
| M1          | 0.9996                    | 0.994                     | 0.999                     | 0.998                     |  |
| M2          | 0.988                     | 0.96                      | 0.995                     | 0.998                     |  |
| M3          | 0.931                     | 0.931                     | 0.999                     | 0.955                     |  |
| M4          | 0.951                     | 0.888                     | 0.996                     | 0.961                     |  |
| M5          | 0.999                     | 0.952                     | 0.998                     | 0.966                     |  |
| M6          | 0.998                     | 0.988                     | 0.999                     | 0.971                     |  |



**Figure 2 - Visual comparison of the sternal end of the physical and digital clavicles.** (A) Sternal surface of a physical clavicle. (B) Sternal surface of an Einscan Pro-HD model, with and without texture. (C) Sternal surface of an Artec Space Spider model, with and without texture. [Image approval: ANATED\_0031]

#### **Scanner Accuracy**

- ANOVA analysis shows no significant differences between datasets when comparing metric data.
- This suggests that SLS can be used to create models which are suitable for metric analysis.

| ANOVA | Mornhological | KM        |
|-------|---------------|-----------|
| ANOVA | Morphological | <b>KV</b> |

**Figure 3 - Intra-rater and inter-rater ICC analysis of each osteometric measurement taken**. ICC values range from 0 to 1, with a result of 1 indicating perfect agreement.

- Kappa statistic analysis shows overarching lack of consistency across morphological analysis.
- Observation of the rhomboid fossa yielded the most consistent results digitally.

|                      | Physical Results            |                             | Digital Results             |                             |
|----------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Observation          | Intra-<br>Observer<br>Kappa | Inter-<br>Observer<br>Kappa | Intra-<br>Observer<br>Kappa | Inter-<br>Observer<br>Kappa |
| Rhomboid Fossa       | 0.727                       | 1.000                       | 0.458                       | 0.371                       |
| Topography           | 0.403                       | 0.366                       | 0.229                       | 0.040                       |
| Porosity             | 0.233                       | 0.395                       | 0.012                       | 0.051                       |
| Osteophyte Formation | 0.276                       | 0.884                       | -0.139                      | 0.082                       |

Figure 4 - Intra-rater and inter-rater Kappa statistic analysis of the morphological observations made for both the physical and digital remains. Kappa values to range from 0 to 1, with 0 indicating

| measurement | p-value | - | Observation    | p-value                 |
|-------------|---------|---|----------------|-------------------------|
| M1          | 0.998   |   | Rhomboid Fossa | 0.850<br>0.051<br>0.005 |
| M2          | 0.590   |   |                |                         |
| M3          | 0.983   |   | Topography     |                         |
| M4          | 0.843   | - | Porosity       |                         |
| M5          | 0.999   |   | Osteonhyte     | 0.001                   |
| M6          | 0.924   |   | Formation      |                         |

**Figure 5 - ANOVA and Kruskal-Wallis (KW) results testing for differences between the data groups.** A value of P < 0.05 is indicates the result is statistically significant. Significant differences indicate that the measurement is not repeatable.

- Kruskal-Wallis tests show significant differences when comparing morphological data scoring.
- Morphological observation of the rhomboid fossa yielded the best KW results this feature is the largest and therefore more easily captured by the scanners.
- Variations within the results are more pronounced where a second observer is involved.
- Observer experience may also impact the accuracy of morphological analysis when carried out on digital remains, further limiting the reliability of the method.

#### Conclusion

- Our evidence shows that there is potential for SLS to be implemented within a forensic setting in the future.
- Metric analysis has demonstrated overall accuracy across modalities as well as between observers therefore we were able to obtain consistent sex estimation results (1, 4)
- Morphological analysis was less accurate and therefore we deemed it inappropriate to carry out age estimation analysis.
- Overall, further research is needed to develop forensic protocols that are digital-specific before the use of digital remains can be implemented within the field.

#### References

(1) Kharuhadetch et.al (2022), Int. J. Morphol, https://www.scielo.cl/pdf/ijmorphol/v40n3/0717-9502-ijmorphol-40-03-768.pdf
(2) Kaewma et. al (2016), Anatomy Research International, doi:https://doi.org/10.1155/2016/9298043.
(3) Madentzoglou et. al (2023), Legal Medicine, doi:https://doi.org/10.1016/j.legalmed.2023.102331.
(4) Spradley and Jantz (2011), Journal of Forensic Sciences, doi:https://doi.org/10.1111/j.1556-4029.2010.01635.x.

#### Acknowledgements

I would like to express my gratitude towards the Anatomical Society for the generous funding that made this project possible.

I would like to thank Dr Stephen Maclean for his unwavering support and encouragement throughout the duration of my project.

Additionally, I would like to thank Dr Jennifer Paxton, Victoria McCulloch and the MSc students I have worked alongside in the ATLAS facility for their insights and collaboration. Thanks to Hunter Auck for his second observer work.