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Opening comments
This file will demonstrate power analysis for 1-Factor GLM via simulation. Before beginning, we hightlight
several key features:

• Performing power analysis for 1-Factor GLM via simulation can provide more relevant results than you
would obtain with standard software, e.g., using GPower, or even the pwr library in R. This is because
these latter approached determine power at the level of the whole experiment (i.e., at the level of the
p-value for GLM (or equivalently, 1-way ANOVA)), and not at the level of post-hoc tests. As a result,
an experimental design with high power at the level of the overall test may have low power at the level
of post-hoc tests (e.g., pairwise comparisons). This is often not realized, and may be undesirable. This
file demonstrates power analysis at both levels of analysis (overall result, and post-hoc tests) to provide
you with the tools to design experiments with appropriate power for your purposes.

• We will demonstrate two approaches to post-hoc tests using the functions 1) pairwise.t.test() and
2) emmeans and pairs (the latter two in the emmeans library).

• We will demonstrate power analysis based on two criteria for ‘successful’ experiments: 1) obtaining a
p-value with at least ‘moderate’ evidence for an effect (i.e., p < 0.05); 2) estimating an effect size with
(at least) a specified level of precision (based on the standard error (SE) of the effect size).

Please note that this file builds upon a previous file in which we demonstrated power analysis via simulation
for a t-test. Therefore, to minimize repetition from this previous file, this current document will focus upon
new aspects of our approach.

Please note that Nick Colegrave and Graeme Ruxton’s book (published 2021), “Power Analysis: An
introduction for the life sciences” (Oxford Biology Primers) provides an excellent and accessible discussion of
power analysis, and teaches power analysis via simulations in R. I have drawn heavily from this book to
create the current document. If you wish to know more about power analysis, please consider this book.

Getting ready for a power analysis.
Power analysis requires preparation. First, we need a sense of a relevant effect size; this decision is based on
biology, not statistics (discussed in videos), and we will not re-visit this topic here. Second, we need a sense
of the expected with-group variation for our planned experiment; i.e., an estimate of the ‘residual’ (or ‘error’)
variance. Or, equivalently, standard deviation. (Recall that standard deviation equals the square-root of the
variance). Here, we demonstrate one method to obtain the residual standard deviation from a dataset.

Imagine that you have conducted a pilot study to obtain a reasonable sense of the residual variation: once
you have these data, how can you obtain an appropriate value? Let’s use R’s dataset, PlantGrowth, as an
example to demonstrate. Our first step would be to load our data into R. In our case, we do:
data("PlantGrowth")

Let’s have a look at the top of the dataframe to learn the names of our variables:
head(PlantGrowth)
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## weight group
## 1 4.17 ctrl
## 2 5.58 ctrl
## 3 5.18 ctrl
## 4 6.11 ctrl
## 5 4.50 ctrl
## 6 4.61 ctrl

We see two columns: weight and group. This experiment was presumably performed to test the hypothesis
that qualities of group would affect weight. Based on this premise, we conclude that weight is the dependent
variable and group is the independent variable.

We will model these data, using lm(), to estimate the residual variance. We model our data as shown, below,
listing the dependent variable to the left of the tilda (~) and independent variable to the right:
pilot.study.lm <- lm(weight ~ factor(group), data = PlantGrowth)

Note that we used the function, factor(), to ensure that lm() treats our independent variable as a factor (or
categorical variable). Recent versions of R can require the step; it is a good habit to build.

Ordinarily, we would check the model assumptions to determine whether the data are appropriate for this
analysis. However, we’ll skip that step because it is not our focus and I do not want to make this file overly
long.

We can obtain an estimate of residual variation in two ways from the model output. First, we’ll use the
model summary():
summary(pilot.study.lm)

##
## Call:
## lm(formula = weight ~ factor(group), data = PlantGrowth)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.0710 -0.4180 -0.0060 0.2627 1.3690
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.0320 0.1971 25.527 <2e-16 ***
## factor(group)trt1 -0.3710 0.2788 -1.331 0.1944
## factor(group)trt2 0.4940 0.2788 1.772 0.0877 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6234 on 27 degrees of freedom
## Multiple R-squared: 0.2641, Adjusted R-squared: 0.2096
## F-statistic: 4.846 on 2 and 27 DF, p-value: 0.01591

Notice the term, Residual standard error:. This term is unfortunate because the value being displayed
(0.6234) is not, in fact, a standard error. Instead, this value equals the standard deviation of the residual
variation for our model. This is the value we would often use to simulate the residual variation in our data
(as we will do, below).

Alternatively, we can extract this value from our model output using the function, sigma():
sigma(pilot.study.lm)

## [1] 0.6233746
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Notice the value is the same as in the output of summary().

Overview
We will build our simulation in five steps:

• First, we’ll simulate a dataset;
• Second, we’ll analyze the simulated data using lm() and obtain and store the overall p-value;
• Third, we’ll conduct post-hoc tests and store the p-values. We will use two approaches to demonstrate

this step;
• Fourth, we will automate the code from steps 1-3 to run many times;
• Fifth, we will calculate power.

Afterwards, we will also demonstrate power analysis based on the precision to which we estimate an effect
size, instead of based on p-values.

Building the simulation. Stage 1: simulate the data.
Imagine that our experiment had one Control treatment (Control) and two Treatment groups (Treat1 and
Treat2); together, these are 3 levels of a factor called, Experimental.Groups. Our goal is to compare the
means from the two Treatments vs. the Control. We begin our simulation by establishing the relevant mean
values for each treatment (these means would reflect our chosen effect sizes) and the appropriate measure
of residual variation. For fun, we’ll use the measure of residual standard deviation we obtained from our
example, above, and assign it to the object, sd.within. We do this here:
control.mean <- 10
treat1.mean <- 9.5
treat2.mean <- 10.5
sd.within <- 0.6233746

Further, let’s imagine that we wish to determine the power of this experiment if we obtained 10 independent
measurements per level of our factor, Experimental.Groups. We’ll assign this sample size to the object,
n.per.group:
n.per.group <- 10

Now, we have the three pieces of information we need to simulate data:

• Mean values that correspond to desired effect sizes;
• An estimate of the residual variation;
• Our sample size (we need to know how many data points to simulate).

We will use the same approach to generate a dataset as we did to simulate data for a t-test, with one difference:
we will simulate data for three groups instead of two. First, we’ll create a vector, called, Experimental.Groups,
which will denote to which level each data point belongs:
Experimental.Groups <- c(rep("Control",n.per.group), rep("Treat1",n.per.group),

rep("Treat2",n.per.group))

Next, we’ll generate the data in a vector called, y.var
y.var <- c(rnorm(n.per.group,control.mean,sd.within),rnorm(n.per.group,treat1.mean,sd.within),

rnorm(n.per.group,treat2.mean,sd.within))

Notice that, above, we simulated data for treatments that match the treatment order in Experimental.Groups
(i.e., we’re being careful to match the information between Experimental.Groups and y.var.)

Now, we will combine our two vectors to create a dataframe; we’ll call the dataframe, sim.data:

3



sim.data<-data.frame(Experimental.Groups,y.var)

Building the simulation. Stage 2: Model data to obtain primary p-value.
Now that we have our data, we will analyze it using a general linear model (lm()). We’ll save our model
output in the object, sim.lm:
sim.lm <- lm(y.var ~ factor(Experimental.Groups), data=sim.data)

Now we need to extract the p-value from the model output and save it; we’ll use this p-value, later, to
determine the power of our experiment to obtain at least moderate evidence (p < 0.05) for an effect of
Experimental.Groups on y.var. We can obtain the p-value from an ANOVA table of our model output:
anova(sim.lm)

## Analysis of Variance Table
##
## Response: y.var
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(Experimental.Groups) 2 7.6309 3.8154 9.6526 0.0006877 ***
## Residuals 27 10.6724 0.3953
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This table provide much more information than we need; we only want the p-value. We’ll creep up on the
p-value. . . First, let’s obtain the first row of the output. We can do this by using the square-brackets (‘[ ]’),
in the same way that we do to obtain specific entries from a dataframe. Remember that, when obtaining
values from a dataframe using square brackets, we list ‘rows’ before ‘columns’ and place a comma in between.
We do the same here; to obtain the first row of the ANOVA table we enter:
anova(sim.lm)[1,]

## Analysis of Variance Table
##
## Response: y.var
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(Experimental.Groups) 2 7.6309 3.8154 9.6526 0.0006877 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Cool, eh?

Now, notice that the p-value lies in the fifth column. Therefore, to obtain only the p-value, specify the fifth
column of the first row of the ANOVA table:
anova(sim.lm)[1,5]

## [1] 0.0006877138

Now that we know how to extract the p-value from our GLM, we wish to save it in a place where we can
collect p-values from lm() output arising from many simulations.

To do so, we’ll first save the p-value in an object called p:
p <- anova(sim.lm)[1,5]

Now, we’ll create an empty vector (anova.vector.p), where we will store all of the p-values from the ANOVA
tables that result from our various simulations.

We create the vector, and then add the p-value to the vector, like this:
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anova.vector.p <- c()
anova.vector.p <- append(anova.vector.p,p)

Building the simulation. Stage 3: post-hoc tests.
Now that we have obtained a p-value for our overall model, we will obtain p-values for post-hoc tests. As
mentioned, above, we will explore two methods to obtain these p-values.

First, we’ll use a method implementing the function, pairwise.t.test(). As its name implies, this function
compares all combinations of mean values among groups via a series of t-tests. To run pairwise.t.test() we
supply the original data (not the output of lm(); see below) by naming the columns that hold the dependent
variable (which we named, y.var) and the independent variable (which we named, Experimental.Groups);
we list the dependent variable first. We also specify whether we wish to adjust the p-values to account for
multiple comparisons, and if so, which method to use.

We’ll make a brief tangent here to consider the topic of p-value adjustment for multiple comparisons. Most
students will expect us to adjust p-values using the Tukey method (i.e., perform a Tukey test). However,
opinion varies widely both in terms of which method of adjustment to use and whether p-values should be
adjusted in the first place! For example, here is a paper that argues against the adjustment of p-values for
multiple comparisons: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-842X.2012.00652.x. To make
our lives simple, in this example we’ll not adjust p-values here (but we revisit this topic, below).

We conduct the pairwise t-tests and save the output (in an object we called, t.out) using this code:
t.out <- pairwise.t.test(y.var,Experimental.Groups,p.adj = "none")

Now, let’s look at the output:
t.out

##
## Pairwise comparisons using t tests with pooled SD
##
## data: y.var and Experimental.Groups
##
## Control Treat1
## Treat1 0.02980 -
## Treat2 0.04537 0.00016
##
## P value adjustment method: none

The output provides three p-values: one for each comparison among our three groups. We explained at
the top of this file that we were most interested in comparisons between the two treatment groups (Treat1,
Treat2) vs. the Control. Therefore, we wish to obtain p-values for these comparisons, specifically. We begin
by obtaining the p-values by adding $p.value to our object:
t.out$p.value

## Control Treat1
## Treat1 0.02979808 NA
## Treat2 0.04536842 0.0001557106

Now, we can use the square brackets ([]’s) in the same way that we did, earlier, to obtain our focal p-values.
The output, immediately above, holds the p-value for the comparison between Treat1 vs. Control in row 1,
column 1. Therefore, we obtain this p-value with:
t.out$p.value[1,1]

## [1] 0.02979808
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Similarly, we can obtain the p-value for the comparison of Treat2 vs. Control from row 2, column 1 like this:
t.out$p.value[2,1]

## [1] 0.04536842

Finally, as we did above, we will store each p-value in its own object (which we name p.1vc (i.e., Treat1 vs
Control) and p.2vc) and add these p-values to their respective vectors (which store p-values from pairwise
comparisons):
p.1vc.vector <- c() #Creating one vector
p.2vc.vector <- c() #Creating another vector

p.1vc <- t.out$p.value[1]
p.1vc.vector <- append(p.1vc.vector,p.1vc)
p.2vc <- t.out$p.value[2]
p.2vc.vector <- append(p.2vc.vector,p.2vc)

As a check, let’s examine the contents of each vector:
p.1vc.vector

## [1] 0.02979808
p.2vc.vector

## [1] 0.04536842

Nice! That’s what we expect, so we’re doing well.

We now have all of the basic code required for our power analyses. All we need to do now is automate the
code to run many times and then calculate power; we do that in the next section.

Before we automate the code, however, we’ll take another brief tangent. Although we used pairwise
comparisons for post-hoc analyses, many alternatives are possible. For example, in one of my publications
(https://academic.oup.com/aob/article/118/3/523/1741768?login=true) I compared the average of one level
of a factor vs. the average of two other levels of that factor. The point here is that, via simulations, we can
perform power analyses for any type of comparisons that we wish. We will address methods to implement
non-pairwise post-hoc comparisons elsewhere.

Building the simulation. Stage 4: Automating the simulations
Above, we learned to simulate a single dataset and obtain appropriate p-values, both for the overal model
(lm() output) and for pairwise comparisons among levels of our factor. Here, we will collect all of our work,
above, and use a for() loop to run our simulations many times.

Here is the collected code. Note that:

• We have created an additional variable, n.sims, which designates the total number of simulated
datasets;

• We have grouped all the variables and vectors we created at the top of the code;
• We placed the code that creates the dataframe and subsequent analyses in a for() loop, which runs

for n.sims times (we run 10000 simulations in this example):
#Our parameters:
n.sims <- 10000
control.mean <- 10
treat1.mean <- 9.5
treat2.mean <- 10.5
sd.within <- 0.6233746
n.per.group <- 10
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#Our vectors:
anova.vector.p <- c()
p.1vc.vector <- c()
p.2vc.vector <- c()

for(i in 1:n.sims){
Experimental.Groups <- c(rep("Control",n.per.group), rep("Treat1",n.per.group),

rep("Treat2",n.per.group))
y.var <- c(rnorm(n.per.group,control.mean,sd.within),

rnorm(n.per.group,treat1.mean,sd.within),
rnorm(n.per.group,treat2.mean,sd.within))

sim.data<-data.frame(Experimental.Groups,y.var)
#Perform GLM and obtain p-value:
sim.lm <- lm(y.var ~ factor(Experimental.Groups), data=sim.data)
p <- anova(sim.lm)[1,5]
anova.vector.p <- append(anova.vector.p,p)
#Perform pairwise comparisons and obtain p-values:
t.out <- pairwise.t.test(y.var,Experimental.Groups,p.adj = "none")
p.1vc <- t.out$p.value[1]
p.1vc.vector <- append(p.1vc.vector,p.1vc)
p.2vc <- t.out$p.value[2]
p.2vc.vector <- append(p.2vc.vector,p.2vc)

}

Building the simulation. Stage 5: Calculating power.
Now, our code will have stores n.sims number of p-values in each of the vectors, anova.vector.p,
p.1vc.vector and p.2vc.vector. We will use these vectors to calculate power for each of the three
aspects of our experiment. Let’s begin with the results from the overall glm, in vector anova.vector.p.

Following standard practice for power analysis, we’ll determine how often our glm provided a p-value less
than 0.05. We can count the number of p-values in our vector with code like this:
overall.small.p <- length(which(anova.vector.p < 0.05))
overall.small.p

## [1] 8745

How does this code work? The which() function evaluates all of the values in the vector, anova.vector.p
and, for each value, determines whether it is less than 0.05. It then returns the number of the position in the
vector at which a p-value < 0.05. For example, if the vector, anova.vector.p contained only 7 p-values
that were less than 0.05, the which() function would return the 7 locations within the vector that held
these p-values. The length() function then counts the number of locations that were returned by which().
Together, these functions determine the number is p-values less than 0.05. We stored this number in the
object, overall.small.p.

Now, to determine the power of our experiment (given the specified sample sizes, effect sizes, residual variation,
etc.) to provide at least moderate evidence (i.e., p < 0.05) for an overall effect of Experimental.Groups
on y.var, we divide the number of simulations that yielded p < 0.05 (stored in anova.vector.p) by the
number of simulations we ran (n.sims):
overall.small.p/n.sims

## [1] 0.8745
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We see that, for our overall result from the general linear model, our proposed experiment has over 80%
power! Nice!

We will use the same approach to determine the power for each of our pairwise comparisons. The power for a
comparison between Treat1 and Control equals:
overall.1vc <- length(which(p.1vc.vector<0.05))
overall.1vc/n.sims

## [1] 0.4003

And similarly, the power for a comparison between Treat2 and Control equals:
overall.2vc <- length(which(p.2vc.vector<0.05))
overall.2vc/n.sims

## [1] 0.4179

Notice that the power for our pairwise comparisons is much lower (on the order of 40%) than
the power for the overall model (over 80%). Which result is most relevant to your study? That
depends on the type of conclusion you primarily wish to make. If you’re most interested in designing a study
that has high power for the overall result (from the p-value of the general linear model, lm()), then the
current experimental design and sample size might meet your needs. (Note that some programs, such as
GPower, perform power analysis at this level of analysis.) If, however, your focus lies in specific comparisons
among groups, then this power analysis suggest that the current design / sample size is unlikely to suit your
needs because power is only around 40%.

Collecting all code, together
Here, we provide all of our code thus far, in one place:
#Our parameters:
n.sims <- 10000
control.mean <- 10
treat1.mean <- 9.5
treat2.mean <- 10.5
sd.within <- 0.6233746
n.per.group <- 10

#Our vectors:
anova.vector.p <- c()
p.1vc.vector <- c()
p.2vc.vector <- c()

for(i in 1:n.sims){
Experimental.Groups <- c(rep("Control",n.per.group), rep("Treat1",n.per.group),

rep("Treat2",n.per.group))
y.var <- c(rnorm(n.per.group,control.mean,sd.within),

rnorm(n.per.group,treat1.mean,sd.within),
rnorm(n.per.group,treat2.mean,sd.within))

sim.data<-data.frame(Experimental.Groups,y.var)
#Perform GLM and obtain p-value:
sim.lm <- lm(y.var ~ factor(Experimental.Groups), data=sim.data)
p <- anova(sim.lm)[1,5]
anova.vector.p <- append(anova.vector.p,p)
#Perform pairwise comparisons and obtain p-values:
t.out <- pairwise.t.test(y.var,Experimental.Groups,p.adj = "none")
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p.1vc <- t.out$p.value[1]
p.1vc.vector <- append(p.1vc.vector,p.1vc)
p.2vc <- t.out$p.value[2]
p.2vc.vector <- append(p.2vc.vector,p.2vc)

}
#Power for overall result from general linear model:
overall.small.p <- length(which(anova.vector.p < 0.05))
overall.small.p/n.sims

## [1] 0.8739
#Power for conparison between Treat1 vs. Control:
overall.1vc <- length(which(p.1vc.vector<0.05))
overall.1vc/n.sims

## [1] 0.416
#Power for comparison between Treat2 vs. Control:
overall.2vc <- length(which(p.2vc.vector<0.05))
overall.2vc/n.sims

## [1] 0.4132

An alternative apporach to pairwise comparisons
Above, we performed post-hoc comparisons using pairwise.t.test(). In this section, we will demonstrate
an alternative approach using the emmeans library.

To demonstrate this approach, we’ll first demonstrate a post-hoc comparison using two functions in the
emmeans library: a function of the same name (emmeans()), and the function pairs(). We will then
incorporate this approach into our general code, developed above.

Let’s begin by opening the emmeans library:
library(emmeans)

As discussed in materials that teach 1-Factor GLM, we begin post-hoc analysis with the emmeans library by
first calculating the means (and SE’s) for each level of our factor (i.e., Experimental.Groups). Here is the
code:
#Using the function, `emmeans`, to calculate means:
sim.emmeans <- emmeans(sim.lm, "Experimental.Groups")
#Let's look at the output:
sim.emmeans

## Experimental.Groups emmean SE df lower.CL upper.CL
## Control 10.0 0.198 27 9.62 10.43
## Treat1 9.4 0.198 27 8.99 9.81
## Treat2 10.4 0.198 27 10.00 10.81
##
## Confidence level used: 0.95

The output provides the estimated means for each group, their SE’s, and 95% Confidence Intervals. Notice
that emmeans() used output from the model (not the original dataframe) to provide this output.

Next, we will perform pairwise comparisons using pairs(), also from the emmeans library. To do so, we
simply provide the output from emmeans() to pairs():
pairs(sim.emmeans)
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## contrast estimate SE df t.ratio p.value
## Control - Treat1 0.625 0.28 27 2.231 0.0839
## Control - Treat2 -0.383 0.28 27 -1.367 0.3717
## Treat1 - Treat2 -1.008 0.28 27 -3.599 0.0035
##
## P value adjustment: tukey method for comparing a family of 3 estimates

We can also ask for a summary of this output (we demonstrate this here, because we need summary() to
extract p-values, below):
summary(pairs(sim.emmeans))

## contrast estimate SE df t.ratio p.value
## Control - Treat1 0.625 0.28 27 2.231 0.0839
## Control - Treat2 -0.383 0.28 27 -1.367 0.3717
## Treat1 - Treat2 -1.008 0.28 27 -3.599 0.0035
##
## P value adjustment: tukey method for comparing a family of 3 estimates

This output provides the p-values for each comparison. Remember that we want p-values for comparisons
between the Control group vs. the two treatment groups (Treat1, Treat2).

Once again, we’ll use the square brackets to obtain the entries we want. For example, we can obtain output
for the first row using:
summary(pairs(sim.emmeans))[1,]

## contrast estimate SE df t.ratio p.value
## 1 Control - Treat1 0.6247118 0.2799729 27 2.231329 0.0838617

. . . And, we can obtain the p-value for the comparison between Control vs. Treat1 using:
summary(pairs(sim.emmeans))[1,6]

## [1] 0.0838617

Similarly, we obtain the p-value for the comparison between Control and Treat2 with:
summary(pairs(sim.emmeans))[2,6]

## [1] 0.3716685

A brief tangent to discuss multiple comparisons
Here, we briefly discuss a few options with respect to correcting p-values for multiple comparisons.

Notice in the output of pairs(), above, that p-values were adjusted for multiple comparisons using a Tukey ap-
proach (see comment, P value adjustment: tukey method for comparing a family of 3 estimates).
We will make two brief comments on this topic.

First, if we wish to do so, we can turn off the p-value adjustment, like this:
summary(pairs(sim.emmeans), adjust = "none")

## contrast estimate SE df t.ratio p.value
## Control - Treat1 0.625 0.28 27 2.231 0.0342
## Control - Treat2 -0.383 0.28 27 -1.367 0.1828
## Treat1 - Treat2 -1.008 0.28 27 -3.599 0.0013

Notice:

• The output no longer states that p-values were adjusted via the Tukey method;
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• The p-values are smaller (because they have not been adjusted upwards).

Second, notice that pairs()’ p-value adjustment assumed that we were making three comparisons, but we
only wish to make two comparisons. This means that, for our purposes (and if you’re someone who agrees
with the practice of adjusting p-values for multiple comparisons), the Tukey method will have adjusted our
p-values upwards more than necessary. This is because greater adjustments occur for greater numbers of
comparisons. What can we do?

A simple solution is to make the adjustment, ourselves. Specifically, we can 1) obtain p-values that were not
adjusted for multiple comparisons, as demonstrated immediately, above, and 2) compare the un-adjusted
p-values against a different threshold p-value than 0.05. For example, we can use the Dunn-Sidak approach
(one of many) to calculate a different threshold p-value. If we aim to maintain a 5% Type 1 error rate, we
calculate this threshold via, alpha_new = 1 - (1 - alpha)ˆ(1/m), where alpha = 0.05 and m equals the
number of comparisons (2, in our case). Therefore, the new threshold p-value would equal 0.02532057. To
summarize, if we wished to adjust p-values, ourselves, we could obtain un-adjusted p-values from pairs() and
compare these values to a critical p-value of 0.02532057, rather than 0.05, to determine whether a simulated
experiment is ‘successful’, or not.

I remind the reader that making conclusions by comparing a p-value versus a threshold p-value is not
recommended (e.g., see https://www.nature.com/articles/d41586 -019-00857-9 ). In the context of a
power-analysis, I view ‘threshold’ p-values as indicating at least ‘moderate’ evidence for an effect, rather than
‘statistical significance’.

Full code using emmeans to implement comparisons:
Here is the full code to implement a power analysis for our experiment, using emmeans. Note that the code
implements the suggestions, above, as an example of controlling p-values when we make only two (not three)
comparisons. Once again, we might do this if we’re of a mindset to control for multiple comparisons, generally.
#Our parameters:
n.sims <- 10000
control.mean <- 10
treat1.mean <- 9.5
treat2.mean <- 10.5
sd.within <- 0.6233746
n.per.group <- 10

#Our vectors:
anova.vector.p <- c()
p.1vc.vector <- c()
p.2vc.vector <- c()

#Open emmeans library:
library(emmeans)

for(i in 1:n.sims){
Experimental.Groups <- c(rep("Control",n.per.group), rep("Treat1",n.per.group),

rep("Treat2",n.per.group))
y.var <- c(rnorm(n.per.group,control.mean,sd.within),

rnorm(n.per.group,treat1.mean,sd.within),
rnorm(n.per.group,treat2.mean,sd.within))

sim.data<-data.frame(Experimental.Groups,y.var)
#Perform GLM and obtain p-value:
sim.lm <- lm(y.var ~ factor(Experimental.Groups), data=sim.data)
p <- anova(sim.lm)[1,5]
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anova.vector.p <- append(anova.vector.p,p)
#Perform pairwise comparisons and obtain p-values:
sim.emmeans <- emmeans(sim.lm, "Experimental.Groups")
p.1vc <- summary(pairs(sim.emmeans), adjust = "none")[1,6]
p.1vc.vector <- append(p.1vc.vector,p.1vc)
p.2vc <- summary(pairs(sim.emmeans), adjust = "none")[2,6]
p.2vc.vector <- append(p.2vc.vector,p.2vc)

}
#Power for overall result from general linear model:
overall.small.p <- length(which(anova.vector.p < 0.05))
overall.small.p/n.sims

## [1] 0.8684
#Power for comparison between Treat1 vs. Control; NOTICE Dunn-Sidak p-value:
overall.1vc <- length(which(p.1vc.vector<0.02532057))
overall.1vc/n.sims

## [1] 0.2967
#Power for comparison between Treat2 vs. Control; NOTICE Dunn-Sidak p-value:
overall.2vc <- length(which(p.2vc.vector<0.02532057))
overall.2vc/n.sims

## [1] 0.3004

Notice that the power declines when we use a more stringent criterion for a ‘successful’ experiment (i.e.,
threshold p = 0.02532057 rather than 0.05).

Power analysis based on precision of effect size estimates, rather than p-values.
In a previous file and video related to power analysis for t-tests, we discussed that we needn’t define a
‘successful’ experiment in terms of p < 0.05. As one alternative, we suggested that an experiment might,
instead, aim to estimate an effect size with a specified level of precision. In this case, we defined a ‘successful’
experiment as one that obtained a standard error for an effect size estimate that was equal to, or or less than,
a threshold value. In other words, we set an upper-limit for the SE of an effect size estimate (i.e., this upper
limit for SE represents a minimum level of precision), and define an experiment as ‘successful’ if the SE for
the effect size estimate is less than the upper limit (i.e., more precise). We will implement this approach, here.

For example, we established two effect sizes in our experiment: Treat1 vs. Control and Treat2 vs. Control.
In both cases we set the effect size to equal 1.0. Imagine that we wished to estimate these effect sizes so
that the 95% CI’s spanned, at most, (mean effect size - 0.6) to (mean effect size + 0.6). In other
words, we aimed to have a maximum 95% CI for our effect size of +/- 0.6. (We will not discuss how one might
settle upon this particular magnitude of 95% CI’s; this decision should reflect the researcher’s particular goals.)
Recall that we can approximate a 95% CI as 1.96*SE. (This approximation works best for large sample sizes;
for small sample sizes, as we have in this file, we should replace the value ‘1.96’ with an appropriate value
from the t-distribution; see videos on 95% Confidence Intervals. For simplicity, we skip this detail in this
example, noting that, because we skipped this detail, our results in this file will not be as accurate as we’d
like.). Therefore, in this example, we can define a ‘successful’ experiment as one in which the
SE’s for the effect sizes are equal to or less than 0.3 (roughly half of 0.6).

To implement this approach, we simply obtain SE’s for relevant effect sizes, rather than p-values. The output
from pairs() provides these SE’s:
sim.emmeans <- emmeans(sim.lm, "Experimental.Groups")
summary(pairs(sim.emmeans))

## contrast estimate SE df t.ratio p.value
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## Control - Treat1 0.266 0.285 27 0.933 0.6247
## Control - Treat2 -0.364 0.285 27 -1.276 0.4204
## Treat1 - Treat2 -0.630 0.285 27 -2.209 0.0877
##
## P value adjustment: tukey method for comparing a family of 3 estimates

We can obtain the SE’s in a similar manner as we obtained p-values, above:
#SE for Control vs. Treat1:
summary(pairs(sim.emmeans))[1,3]

## [1] 0.2852211
#SE for Control vs. Treat2:
summary(pairs(sim.emmeans))[2,3]

## [1] 0.2852211

We would compare these SE values vs. our desired, maximum SE value (0.3, in this example) to determine
whether a simulation yielded a ‘successful’ experiment.

Here, we provide the full code to implement this approach. Note that this code changes the vector names to
reflect the fact that they store SE values, rather than p-values.
#Our parameters:
n.sims <- 10000
control.mean <- 10
treat1.mean <- 9.5
treat2.mean <- 10.5
sd.within <- 0.6233746
n.per.group <- 10

#Our vectors:
anova.vector.p <- c()
se.1vc.vector <- c()
se.2vc.vector <- c()

#Open emmeans library:
library(emmeans)

for(i in 1:n.sims){
Experimental.Groups <- c(rep("Control",n.per.group), rep("Treat1",n.per.group),

rep("Treat2",n.per.group))
y.var <- c(rnorm(n.per.group,control.mean,sd.within),

rnorm(n.per.group,treat1.mean,sd.within),
rnorm(n.per.group,treat2.mean,sd.within))

sim.data<-data.frame(Experimental.Groups,y.var)
#Perform GLM and obtain p-value:
sim.lm <- lm(y.var ~ factor(Experimental.Groups), data=sim.data)
p <- anova(sim.lm)[1,5]
anova.vector.p <- append(anova.vector.p,p)
#Perform pairwise comparisons and obtain p-values:
sim.emmeans <- emmeans(sim.lm, "Experimental.Groups")
se.1vc <- summary(pairs(sim.emmeans))[1,3]
se.1vc.vector <- append(se.1vc.vector,se.1vc)
se.2vc <- summary(pairs(sim.emmeans))[2,3]
se.2vc.vector <- append(se.2vc.vector,se.2vc)
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}
#Power for overall result from general linear model:
overall.small.p <- length(which(anova.vector.p < 0.05))
overall.small.p/n.sims

## [1] 0.8677
#Power for comparison between Treat1 vs. Control; NOTICE use of threshold SE:
overall.1vc <- length(which(se.1vc.vector<0.3))
overall.1vc/n.sims

## [1] 0.7455
#Power for comparison between Treat2 vs. Control; NOTICE use of threshold SE:
overall.2vc <- length(which(se.2vc.vector<0.3))
overall.2vc/n.sims

## [1] 0.7455

Please note that this code uses two separate criteria to calculate power:

• p < 0.05 to determine power for the overall result from the general linear model (lm())
• SE < 0.3 for estimates of effect size.

Notice that our power, based upon SE for effect size, is very different from what we found when using
p < 0.05 for post-hoc comparisons. Our power would have been smaller if we’d required a more precise
experiment.

The (non-) influence of effect size on power, when using SE of effect size to
determine ‘success’.
We previously demonstrated that, in the context of t-tests, effect size did not affect power when we designed
experiments to measure an effect size with a minimum level of precision. Is this also true for 1-Factor GLM?
Let’s find out.
e Here, we use identical code to that used directly, above, except I changed the differences between Control
vs. Treat1 and Treat2 from 1 unit to 1000 units. What happens?
#Our parameters:
n.sims <- 10000
control.mean <- 10
treat1.mean <- -990
treat2.mean <- 1010
sd.within <- 0.6233746
n.per.group <- 10

#Our vectors:
anova.vector.p <- c()
se.1vc.vector <- c()
se.2vc.vector <- c()

#Open emmeans library:
library(emmeans)

for(i in 1:n.sims){
Experimental.Groups <- c(rep("Control",n.per.group), rep("Treat1",n.per.group),

rep("Treat2",n.per.group))
y.var <- c(rnorm(n.per.group,control.mean,sd.within),
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rnorm(n.per.group,treat1.mean,sd.within),
rnorm(n.per.group,treat2.mean,sd.within))

sim.data<-data.frame(Experimental.Groups,y.var)
#Perform GLM and obtain p-value:
sim.lm <- lm(y.var ~ factor(Experimental.Groups), data=sim.data)
p <- anova(sim.lm)[1,5]
anova.vector.p <- append(anova.vector.p,p)
#Perform pairwise comparisons and obtain p-values:
sim.emmeans <- emmeans(sim.lm, "Experimental.Groups")
se.1vc <- summary(pairs(sim.emmeans))[1,3]
se.1vc.vector <- append(se.1vc.vector,se.1vc)
se.2vc <- summary(pairs(sim.emmeans))[2,3]
se.2vc.vector <- append(se.2vc.vector,se.2vc)

}
#Power for overall result from general linear model:
overall.small.p <- length(which(anova.vector.p < 0.05))
overall.small.p/n.sims

## [1] 1
#Power for comparison between Treat1 vs. Control; NOTICE use of threshold SE:
overall.1vc <- length(which(se.1vc.vector<0.3))
overall.1vc/n.sims

## [1] 0.743
#Power for comparison between Treat2 vs. Control; NOTICE use of threshold SE:
overall.2vc <- length(which(se.2vc.vector<0.3))
overall.2vc/n.sims

## [1] 0.743

Notice what happened when we drastically changed the effect size. On one hand, the larger effect size greatly
increased power for the overall result from lm(), where we assessed power via p < 0.05; now, power is
essentially 100%. On the other hand, changing the effect size had no noticeable influence on power when
we were interested in the precision to which we can estimate an effect size. This observation is very useful.
This implies that, if we design an experiment with the goal to estimate an effect size with a
minimum level of precision, and we analyze the data with a general linear model (e.g., lm()),
we do not need to know a reasonable effect size a priori to conduct the power analysis.
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