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This file demonstrates how to conduct a power-analysis for a t-test via simulation.

Establishing parameters
Our first step is to establish the parameters (essential components) of our power analysis.

In this file, we demonstrate power analysis for a standard (i.e., ‘Students’) t-test. Therefore, we will create a
dataset with two groups, which we’ll name group.1 and group.2 (inspired, eh?).

We’ll imagine that our control group (group.1) has a mean of 5. As well, we’ll imagine that we want our
experiment to detect a change in the mean of 1 unit, and we expect that this change will increase the mean.
Therefore, we’ll set the mean of the manipulated group (group.2) to have a mean of 6.

When programming (which is what we’re doing here), it is often useful to assign a value to an object, and
then use the object in the main body of the program. This approach allows us to keep all parameters in one
area of the code; if we wish to change the value of something (e.g., the mean of group.1) we can do so by
changing its value at one location in our program (rather than hunting throughout our program for every
place that we use that value). For example, we’ll set the mean values for group.1 and group.2, respectively,
as:
mean.1 <- 5
mean.2 <- 6

Now, we similarly need to assign a value for the standard deviation for residual variation; we’ll assume that
this variation is equal in our two groups, so we’ll only specify one value (sd.both; we’ll imagine that the
standard deviation equals 0.5).
sd.both <- 0.5

Next, we’ll set the sample size for our experiment, for which we wish to determine the statistical power:
sample.size <- 5

Finally, we need a way to keep track of how many times we’ve had a ‘successful’ experiment. What do we
mean by ‘successful’? When we conduct a power analysis, we imagine that an effect truly exists (in our
case, we did this by setting different mean values for the two groups (mean.1 <- 5, mean.2 <- 6)). We
then establish the power of our experiment by determining the probability of our being able to detect this
effect (given our assumptions about the experiment, e.g., the value of sd.both) with a given sample size. To
determine this probability, we run our experiment many times (via simulations) and count the number of
times that we could detect an effect. The standard way of saying we’ve detected an effect is to obtain p <
0.05 (but see lecture materials for warnings about this approach). Now, back to the matter at hand: we need
a way to count the proportion of our simulated ‘experiments’ that are successful. We’ll do this by setting the
total number of simulated experiments that we’ll run and by creating a counter that will increment each time
a simulated ‘experiment’ yields p < 0.05:
nsims <- 10000
counter <- 0
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Create a dataset
Our parameters, established above, describe the conditions for our experiment. Now that we know the
conditions, we can use them to simulate a dataset.

We’ll use the function rnorm() to simulate our data. rnorm() takes three arguments, in this order:

• The number of random numbers to be drawn from a normal distribution;
• The mean value for the normal distribution from which the numbers are drawn;
• The standard deviation for the normal distribution from which the numbers are drawn.

Therefore, we can draw 10 random numbers from a normal distribution with a mean of 100 and a standard
deviation of 3, like this:
rnorm(10,100,3)

## [1] 95.58886 97.35292 105.16731 95.23943 101.51461 99.70763 101.82953
## [8] 99.36850 96.25744 106.10426

We can see the shape of the distribution by drawing lots of random numbers and plotting them in a histogram:
hist(rnorm(10000,100,3))

Histogram of rnorm(10000, 100, 3)
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Now that you see how we can use rnorm(), you’ll see that we can draw 5 random numbers (remember, we
set sample.size <- 5, above) from each group, using the mean values and standard deviation we specified,
above, as:
group.1 <- rnorm(sample.size, mean.1,sd.both)
group.2 <- rnorm(sample.size, mean.2,sd.both)
group.1

## [1] 5.084425 5.622888 5.298120 5.811789 6.085595

group.2
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## [1] 5.344521 6.943372 6.389124 5.532942 6.622975

Analysing the data and counting the number of ‘successes’
Now that we’ve created the data, we need to analyse it to see whether we’ve detected a difference between
the two groups (based on p < 0.05). We’ll use the function for a t-test, where we specify that we assume
the standard deviation is equal in the two groups (this is an assumption of a Student’s t-test); we’ll also save
the output of our t-test in an object we’ll call, t.out:

t.out <- t.test(group.1,group.2,var.equal = TRUE)

t.test produces a lot of different output, stored in t.out.

For the sake of our power analysis, we only need to know the p-value from this output. We can obtain the
p-value like this:
t.out <- t.test(group.1,group.2,var.equal = TRUE)
t.out$p.value

## [1] 0.1410511

Remember that we wanted to determine whether each simulated experiment was a ‘success’? In this example,
a ‘success’ means that we obtain p < 0.05; therefore, we can determine whether we have a successful
experiment by comparing the p-value vs. 0.05:
t.out$p.value < 0.05

## [1] FALSE

(We’re almost done. . . ) Now, we need to count all the times that an experiment was a success. We’ll do
that by asking whether p < 0.05 and increment our counter if it is true. We can do this with an if()
statement, which will assess a statement (in our case, whether t.out$p.value < 0.05) and perform a task
if that statement is TRUE:
if(t.out$p.value < 0.05){counter <- counter + 1}

Notice how we increment the counter: counter <- counter + 1. This means that we take the original
value of counter, add 1 to it, and then re-assign this sum to the object counter. i.e., we replace the value of
counter with its value incremented by 1.

Let’s look at the value of counter now: ask yourself whether its value makes sense, given the p-value we
obtained, above:
counter

## [1] 0

And that is how we analyse the data and keep track of whether the simulated experiment was a ‘success’!

Repeating the simlated experiments many times.
It would be very cumbersome if we had to repeat the process, above, many times by hand. We need a way to
automate this process to we can conduct many (i.e., nsims <- 10000) times. We can use a for loop for this
purpose. A for loop looks like this:
my.numbers <- 0
for(i in 1:10){

my.numbers <- my.numbers + 1
}
my.numbers

## [1] 10
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The code, above stars by creating an object, my.numbers and setting it equal to zero. Then, we enter the
for loop. The loop starts with this: for(i in 1:10). This code creates an object, i. i will equal 1 the first
time the for loop runs. It will equal 2 the next time the for loop runs, an so on, until i equals 10. You can
think of i as a counter, and the for loop runs until i equals the final value (10, in this toy example). Each
time the for loop runs, it will implement the code within the curly brackets: my.numbers <- my.numbers +
1. As explained above for our object, counter, this code increments my.numbers by one each time the code
is run. As the code runs 10 times, we see that, when we exit the for loop, my.numbers equals 10.

Below, you’ll see how we can use the for loop for the purposes of our simulations.

Bringing the code together
Now that you’ve learned the pieces, we can put them together, like this:
#It can be a good idea to run this code before the simulations; it deletes all objects
#from R, leaving you with a 'clean' working environment
rm(list=ls())

mean.1 <- 5
mean.2 <- 6
sd.both <- 0.5
sample.size <- 5
counter <- 0
nsims <- 10000

for(i in 1:nsims){
group.1 <- rnorm(sample.size, mean.1,sd.both)
group.2 <- rnorm(sample.size, mean.2,sd.both)
t.out <- t.test(group.1,group.2,var.equal = TRUE)
if(t.out$p.value < 0.05){counter <- counter + 1}

}

counter/nsims

## [1] 0.7903

Note the final line of code, which occurs outside the for loop: counter/nsims. This code divides the number
of times that p < 0.05 in our simulations (stored in counter) by the total number of simulated experiments
(nsims); the result equals the proportion of simulated experiments in which we detected an ‘effect’, based on
p < 0.05. This proportion equals the statistical power of our experiment.

Organizing code as a function
Perhaps you dislike how the code is organized, above. An alternative is to create a function that will perform
a power analysis for a t-test: you would simply input the sample size in each group (we assume the sample
size is the same in this example), the mean value for each group, and the standard deviation, run the code,
and obtain the answer.

We can do so like this:
#First, we create our function, like this:

power.sim.t.test <- function(sample.size,mean.1,mean.2,sd.both){
#Notice that we enter the sample size, mean values and sd when we call the function,
#and these values are used in the code, below.
counter <- 0
nsims <- 10000
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for(i in 1:nsims){
group.1 <- rnorm(sample.size, mean.1, sd.both)
group.2 <- rnorm(sample.size, mean.2, sd.both)
t.out <- t.test(group.1,group.2,var.equal = TRUE)
if(t.out$p.value < 0.05){counter <- counter + 1}

}
return(counter/nsims)

}

#To run the function, we provide the sample size (5), mean of group 1 (5), mean of
#group 2 (6), and the sd (0.5):
power.sim.t.test(5,5,6,0.5)

## [1] 0.7923

Why might we want to organize our data as a function? Well, imagine that we wanted to run a power analysis
for a variety of sample sizes. Can you think of code that would use our function, above, and iterate it for a
series of sample sizes? Try it!
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