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Please note that, given strong overlap between analyses presented here and those in previous documents,
this document focuses explanations on aspects related to mixed effects models, per se. Please see earlier
documents related to, say, analysis by 1-Factor GLM, for explanation of analyses not strictly
related to mixed-effects models.

Question 1: Analysis of Height in Yellow Monkeyflower
Let’s begin by importing the data:
mim <- read.table("HeightStress.csv", header = TRUE, sep = ',')

(I named the dataframe, mim, in honour of the species being studied, Mimulus guttatus.)

Before going further, let’s check whether our variables are of the desired type:
str(mim)

## 'data.frame': 321 obs. of 3 variables:
## $ Treatment: chr "Control" "Control" "Control" "Control" ...
## $ Height : int 70 65 65 65 64 66 64 68 65 78 ...
## $ Genotype : chr "3 a" "9 a" "27 a" "1 a" ...

We see that Treatment and Genotype are type chr (i.e., character). (Please note that other versions of R,
different from mine, sometimes recognize these variables as type Factor) Let’s convert them to type, Factor:
mim$Treatment <- factor(mim$Treatment)
mim$Genotype <- factor(mim$Genotype)

Now, we’ll double-check that they are the desired type:
str(mim)

## 'data.frame': 321 obs. of 3 variables:
## $ Treatment: Factor w/ 3 levels "Control","H2Ostress",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Height : int 70 65 65 65 64 66 64 68 65 78 ...
## $ Genotype : Factor w/ 19 levels "1 a","11 a","13 a",..: 12 19 10 1 12 17 18 5 7 8 ...

Looks good!

Part (a)

Let’s look at the top of the dataframe:
head(mim)

## Treatment Height Genotype
## 1 Control 70 3 a
## 2 Control 65 9 a
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## 3 Control 65 27 a
## 4 Control 65 1 a
## 5 Control 64 3 a
## 6 Control 66 5 a

We see three columns: Treatment, Height and Genotype. Our hypothesis aim to test whether the environment
(specified by Treatment) affects Height. This thinking implies we expect Height to depend on Treatment;
i.e., Height is the dependent variable and we will place it to the left of the tilda (~) in our code to plot the
data as a boxplot:
boxplot(Height ~ Treatment, data = mim)
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Recall that the ‘boxes’ in the boxplots show the range of the middle 50% of the data. Based on this we see
little overlap between each distribution, suggesting that we might expect differences in Height between all
three levels of Treatment. Also, note that the boxplots are relatively symmetrical, suggesting that the data
may meet the assumptions of normality. However, this might change when we take a closer look at the data.

Part (b)

We will select Treatment as a fixed effect: we are specifically interested differences among the levels of
Treatment. Moreover, and as a more subtle point, we expect that the information from one level of Treatment
need not inform the value of another level of Treatment.

Part (c)

We will select Genotype as a random effect. We are not interested in the values of individual levels of
this factor. (By ‘level’ of Genotype, we mean the identity of each genotype.) Moreover, the levels of this
treatment were selected randomly from a population, and we aim to model our data in a way that allows
us to make inferences about the population from which these genotypes come. Note that when we specify
Genotype as a random effect, information from all levels of Genotype will be used to inform estimates of all
other levels of Genotype.

Part (d)

We will model the data in Genotype for two reasons:

• First, note that we often have more than one measurement of Height for a given genotype within a
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level of Treatment. If we did not account for this fact in our analysis, we’d violate the assumption
is independence (i.e., introduce pseudo-replication). By modelling Genotype, we avoid violating the
assumption of independence. This is the point that has been emphasized in our introductory videos to
mixed effects models.

• Our second reason is something we’ve not discussed in our introductory videos for mixed effects models
(but we will do so in videos with a more advanced perspective). (Consider the explanation here as
‘bonus’ for this question.) We’ll briefly introduce our second reason here as foreshadowing for a more
thorough discussion in the future. In short, our analysis of Genotype, below, will allow us to model
effects of Genotype across levels of Treatment, in addition to accounting for the multiple measurements
per Genotype level per Treatment level to account for pseudo-replication. There are multiple ways of
modeling how levels of Genotype can vary among levels of Treatment. Our analysis, below, will use
the simplest approach: we will assume that an estimate of a given level of Genotype will deviate from
the mean of each level of Treatment by the same amount, but the size of this deviation will vary among
levels of Genotype. We illustrate this in the figure, below. This figure provides an imaginary illustration
of the data in this experiment: we see three long, black horizontal lines, which represent the mean values
of each of the three levels of Treatment (Control, H2Ostress and JAM). For each Treatment level, note
three smaller, horizontal lines in three colours (red, blue, green): Each colour represents information for
a given genotype (i.e., level of Genotype): the difference between each coloured horizontal line and the
black line for a Treatment level represents the effect of a given genotype on Height. Notice that the
blue horizontal line always has the same deviation from the mean of the three Treatment levels (this is
true for all three colours): this illustrates that we’re modeling the effect of Genotype in a way
that assumes that a given genotype (level of Genotype) always affects Height in the same
way and by the same amount for all three levels of Treatment. Finally, note that we have 3
measurements per Genotype level per Treatment level: the differences between these measurments
(i.e., the ‘points’ on the plot) and the estimated effect of each Genotype level represents the residual
variation.

Control

H2Ostress

JAM

3 Treatments (black, horizontal lines)

M
ea

su
re

m
en

ts

Part (e)

We will use the lmer() function in the lme4 library to run our analysis. Note that this function, on its
own, does not provide p-values (for very good reasons that are beyond the scope of this exercise). There are
multiple ways of calculating p-value; my preference is to use parametric bootstrapping, implemented by,
for example, the PBmodcomp() function in the pbkrtest library. However, this approach deviates somewhat
from what we’re used to seeing so far and requires further explanation. Therefore, we’ll instead use the
lmerTest library to calculate p-values in a fashion that is more familiar to you (and this is also the approach
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we use in introductory videos for mixed effects models). Note however, that the approaches used by lmerTest
can be anti-conservative (i.e., can yield p-values smaller than they should be).

With all of this in mind, let’s open the required libraries and create our model:
library(lme4)

## Loading required package: Matrix
library(lmerTest)

##
## Attaching package: 'lmerTest'

## The following object is masked from 'package:lme4':
##
## lmer

## The following object is masked from 'package:stats':
##
## step
mim.lmer <- lmer(Height ~ Treatment + (1|Genotype), data = mim)

This model specifies Height and the dependent variable; for our independent variable, we model Treatment
as a fixed effect (Factor) and Genotype as a random effect (also a Factor; see top of this document). Note
that we modeled Genotype using the notation, (1|Genotype): this notation reflects our assumption that
each genotype affects Height the same way (and by the same amount) for all treatment levels, as illustrated
in the Figure, above. There are alternative ways of modeling Genotype as a random effect, which we will
address in more detailed discussion of mixed effects models. For now, we’re happy to just use (1|Genotype).

We can check our residual in a similar way as we did when using the lm() function. However, the output
provides only a single plot (not four) when we submit the command, plot(object.with.my.model.results).

We assess the assumption of equal variance like this:
plot(mim.lmer)
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This plot looks very nice. Ideally, we want this plot to look like a ‘cloud’; i.e., with no obvious trends. This
seems to be what we see. There may be a tiny tendency for the residuals to become more variable (i.e.,
more spread out, vertically) as we move from left to right (indicating that we violate the assumption of
equal variance). However, if this occurs at all, the effect is slight. Moreover, log-transformation has little
effect (try this yourself). We would report the assumptions we checked, how we checked them,
and whether they were met. We’ll proceed assuming the data meet the assumption of equal variance.

We can plot ths distribution of residual like this:
hist(resid(mim.lmer))
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Histogram of resid(mim.lmer)
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This looks beautiful. We’re happy that the data meet the assumptions (recalling that the data meet the
assumption of randomization and our analysis accounts for non-independence).

Part (f)

Let’s look at our p-values. Having loaded the lmerTest library, we can check the p-values like this (note that
this approach, using lmerTest, accounts for unbalanced data):
anova(mim.lmer)

## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## Treatment 41570 20785 2 300.48 572.78 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that our p-value is tiny, indicating strong evidence for an effect of Treatment on Height. We would
report this p-value, along with the F-value and the two types of degrees of freedom (NumDF,
DenDF).

Now, our job is to examine the effect sizes and obtain p-values for comparisons among Treatment levels. We
can do this using emmeans, as we have in previous analyses using lm().

Open the emmeans library:
library(emmeans)

Now, we want to calculate the means for each level of Treatment:
mim.emmeans <- emmeans(mim.lmer, "Treatment")

And we obtain our means, their SE’s and 95% CI’s here (note that we would report all of this output):
mim.emmeans
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## Treatment emmean SE df lower.CL upper.CL
## Control 69.0 1.18 21.9 66.5 71.4
## H2Ostress 41.7 1.25 27.7 39.2 44.3
## JAM 55.0 1.25 28.3 52.4 57.5
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95

We can perform comparisons among Treatment levels in a way that accounts for multiple comparisons (Tukey
method) like this:
pairs(mim.emmeans)

## contrast estimate SE df t.ratio p.value
## Control - H2Ostress 27.2 0.814 300 33.456 <.0001
## Control - JAM 14.0 0.825 301 16.977 <.0001
## H2Ostress - JAM -13.2 0.923 300 -14.338 <.0001
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 3 estimates

We would report all of the output here (reporting df may not be necessary). What do we learn?

• We have strong evidence (p < 0.0001) for all differences among Treatment levels.
• We note that H2Ostress decreases height relative to the Control group by about twice as much that

the JAM treatment does. This may be biologically interesting. Also, both H2Ostress and JAM reduce
height by degree that may be biologically meaningful (by about 40% and 20%, respectively).

Finally, we can determine 95% CI’s for these effect sizes:
confint(pairs(mim.emmeans))

## contrast estimate SE df lower.CL upper.CL
## Control - H2Ostress 27.2 0.814 300 25.3 29.2
## Control - JAM 14.0 0.825 301 12.1 15.9
## H2Ostress - JAM -13.2 0.923 300 -15.4 -11.1
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
## Conf-level adjustment: tukey method for comparing a family of 3 estimates

These 95% CI’s indicate that we’ve estimated effect sizes fairly precisely. For example, the 95% CI’s for the
difference between Control and H2Ostress equal 25.3 and 29.2. Given that the mean of the Control group
equals 69.0, these 95% CI’s imply that H2Ostress plausibly decreases Height by 36% (i.e., 25.3 / 69.0)
to 42% (i.e., 29.2 / 69.0). We would report this conclusion, and do similarly for the JAM level of
Treatment.

BONUS

Before we complete this question, let’s look at the summary output from our model - there’s something
special to notice.
summary(mim.lmer)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Height ~ Treatment + (1 | Genotype)
## Data: mim
##
## REML criterion at convergence: 2101.5
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##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.0888 -0.6139 -0.0850 0.6203 3.2755
##
## Random effects:
## Groups Name Variance Std.Dev.
## Genotype (Intercept) 21.57 4.644
## Residual 36.29 6.024
## Number of obs: 321, groups: Genotype, 19
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 68.9644 1.1751 22.0119 58.69 <2e-16 ***
## TreatmentH2Ostress -27.2422 0.8142 300.4328 -33.46 <2e-16 ***
## TreatmentJAM -14.0031 0.8248 300.6445 -16.98 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) TrtH2O
## TrtmntH2Ost -0.256
## TreatmntJAM -0.253 0.365

First, notice that this output is very similar to what we see for a standard 1-Factor GLM implemented
using lm(). However, notice that we now have estimates under the heading, Random effects:. We see
an estimate of variation associated with Genotype and also associated with Residual. Examine the final
column in this section, titled, Std.Dev: this column provides the estimated variation in our data explained by
Genotype and Residual variation expressed as a standard deviation. These values are 4.644 and 6.024 for
Genotype and Residual, respectively. This implies that there is almost as much variation among genotypes
as there is within Genotype/Treatment combinations (i.e., residual variation). This is biologically interesting,
because it implies that, potentially, Genotype levels (i.e., different genotypes) may have quite varied effects on
Height (i.e., this may provide evidence for genetic variation for Height). Cool, eh? Biologists who study the
(quantitative) genetics of traits use this kind of information very frequently to get a sense of the proportion of
variation in a trait can be explained by genetics (i.e., ‘heritability’, broadly speaking). The point here is that,
although our focal analysis called us to model Genotype as a random effect to control for pseudo-replication,
for some (biological) questions we may be specifically interested in quantifying the amount of
variation explained by a random effect, and mixed effects models can help us here - cool, right?!

Question 2
Before, we begin this analysis, let’s consider the experimental design. This dataset includes multiple
measurements from individual subjects because protein expression was measures more than once per mouse.
However, the multiple measurements per mouse arose from different tissues: i.e., each tissue within a given
mouse was measured only once. This experimental design does not violate the assumption of independence if
were only interested in making comparisons among tissues (i.e., if ‘tissue’ was the only independent variable
in our analysis). However, this is not true in our case. Instead, the researchers wanted to know whether the
effect of tissue on protein expression differed over time: i.e., they wanted to look for an interaction between
tissue and time. Note that each mouse was killed at a specific time point and we have multiple measurements
per mouse at a given time. This means that if we include time in the analysis, we need to account for
non-independence that arises due to having multiple measurments per mouse per time period. Overall, the
point here is that we’ll analyze these data with a mixed effects model because we want to account for the
non-indepedence that arises when we include time in the model.

Let’s import the data:
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mys <- read.table("MysteryData.csv", header = TRUE, sep = ',')

Now, let’s check our variables:
str(mys)

## 'data.frame': 54 obs. of 4 variables:
## $ tissue : chr "brain" "brain" "brain" "brain" ...
## $ SMN_exp: num 1.202 1.282 1.122 1.064 0.984 ...
## $ mouse.c: chr "M1 5" "M2 5" "M3 5" "M1 10" ...
## $ age.fac: chr "Five" "Five" "Five" "Ten" ...

Note three variables listed as type chr (character), where we’d like them to be Factor: tissue, mouse.c
(i.e., mouse subject identity) and age.fac (age). Notice that we will model age as a category / Factor,
rather than as a continuous variable (i.e., covariate). Let’s convert each to a Factor and check that our
efforts have worked (note that this step may not be necessary for you, depending on your version of R and
how it interprets data imported with the read.table() function).
mys$tissue <- factor(mys$tissue)
mys$mouse.c <- factor(mys$mouse.c)
mys$age.fac <- factor(mys$age.fac)
#Check our work:
str(mys)

## 'data.frame': 54 obs. of 4 variables:
## $ tissue : Factor w/ 6 levels "brain","heart",..: 1 1 1 1 1 1 1 1 1 6 ...
## $ SMN_exp: num 1.202 1.282 1.122 1.064 0.984 ...
## $ mouse.c: Factor w/ 9 levels "M1 10","M1 15",..: 3 6 9 1 4 7 2 5 8 3 ...
## $ age.fac: Factor w/ 3 levels "Fifteen","Five",..: 2 2 2 3 3 3 1 1 1 2 ...

Excellent!

Let’s carry on.

Part (a)

We’re asked to plot the data in a boxplot. Our hypothesis is that tissue and age (age.fac) affect gene
expression (column, SMN_exp). Therefore, we conclude that SMN_exp is the dependent variable (and gos to
the left of the ~ in our model). Also, tissue and age.fac are the independent variables. If we ignore the
effect of mouse.c, we can plot our data in the same way that we would for a standard 2-Factor glm:
boxplot(SMN_exp ~ tissue*age.fac, data = mys, cex.axis = 0.5, las = 2)
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(In case you are wondering, the las = 2 option rotated the orientation of the axis labels; cex.axis = 0.5
made these labels only half their usual size.)

Hmmm. . . There’s a lot to digest here. But, looking carefully, we might expect to find an interaction between
tissue and age.fac. For example, compare the values of SMN_exp in the liver vs. muscle at times ‘five’
vs. ‘fifteen’: liver tends to be higher than muscle in the former but lower in the latter.

Part (b)

Let’s model our data. Following our logic for the boxplot, above, we know that SMN_exp is the dependent
variable, and tissue and age.fac will be our independent variables. Will we be able to model an interaction
between tissue and age.fac? We answer that question in the same way we would for a normal 2-Factor glm:
we ask ourselves whether we have at least 2 independent measurements in each combination of our two Factors
(tissue and age.fac). In our case, we do, because the data include at least 2 mice per level of age.fac
(and each mouse yield 1 measurement per level of tissue); therefore, our data meet the requirements to
model an interaction. Finally, we’ll model mouse.c as a random effect:
#Just a reminder to open the relevant libraries; see Question 1:
library(lme4)
library(lmerTest)
#Formulate our model:
mys.lmer <- lmer(SMN_exp ~ tissue*age.fac + (1|mouse.c), data = mys)

Now, let’s check the assumptions:
plot(mys.lmer)
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This plot looks ideal: the residuals form a nice ‘cloud’ with no apparent pattern.
hist(resid(mys.lmer))

Histogram of resid(mys.lmer)
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This plot also looks great.

We’re satisfied that the data meet the assumptions of the model. (Recall that our analysis accounts for
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known sources of non-independence; also, to me knowledge the mice were allocated randomly to levels of
age.fac; these two observations allow us to conclude the data also meet the assumptions of independence
and randomization.)

With this in mind, let’s look at our p-values:
anova(mys.lmer)

## Type III Analysis of Variance Table with Satterthwaite's method
## Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
## tissue 3.4434 0.68869 5 30.0003 220.501 < 2.2e-16 ***
## age.fac 0.9111 0.45556 2 6.0002 145.861 8.182e-06 ***
## tissue:age.fac 0.3828 0.03828 10 30.0003 12.255 4.370e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(As a reminder, I prefer to implement PBmodcomp to calculate p-values, but the p-values shown here are likely
to be calculated in a similar fashion to many other software packages.)

We find a very small p-value for the interaction, suggesting strong evidence for an interaction between tissue
and age.fac for protein expression (SMN_exp). As a result, we focus our analysis not on intrpreting this
interaction and we do not attempt to interpret the main effect of tissue and age.fac, following the exact
same logic as we learned for standard 2-Factor GLMs (implemented with lm()). We would report the
results in the table above, as we would for a standard 2-Factor glm.

We now wish to better understand the interaction. We will examine effect sizes to do so. As usual, we’ll use
emmeans. There are many ways to interrogate the effect sizes. We’ll examine differences among tissue levels
(e.g., liver vs. muscle), and we’ll do so separately for each level of age.fac:
mys.emmeans <- emmeans(mys.lmer, "tissue", by = "age.fac")
mys.emmeans

## age.fac = Fifteen:
## tissue emmean SE df lower.CL upper.CL
## brain 0.927 0.0324 36 0.861 0.993
## heart 0.306 0.0324 36 0.241 0.372
## kidney 0.533 0.0324 36 0.467 0.599
## liver 0.326 0.0324 36 0.260 0.392
## muscle 0.179 0.0324 36 0.113 0.245
## spinal cord 0.658 0.0324 36 0.592 0.724
##
## age.fac = Five:
## tissue emmean SE df lower.CL upper.CL
## brain 1.202 0.0324 36 1.136 1.268
## heart 0.655 0.0324 36 0.589 0.720
## kidney 1.106 0.0324 36 1.040 1.171
## liver 0.365 0.0324 36 0.299 0.431
## muscle 0.629 0.0324 36 0.563 0.695
## spinal cord 0.842 0.0324 36 0.776 0.908
##
## age.fac = Ten:
## tissue emmean SE df lower.CL upper.CL
## brain 1.009 0.0324 36 0.943 1.074
## heart 0.368 0.0324 36 0.303 0.434
## kidney 0.538 0.0324 36 0.472 0.604
## liver 0.284 0.0324 36 0.219 0.350
## muscle 0.365 0.0324 36 0.299 0.431
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## spinal cord 0.779 0.0324 36 0.713 0.845
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95

We would report these values.

Now, let’s compare protein expression among tissues (by age):
pairs(mys.emmeans)

## age.fac = Fifteen:
## contrast estimate SE df t.ratio p.value
## brain - heart 0.62080 0.0456 30 13.605 <.0001
## brain - kidney 0.39406 0.0456 30 8.636 <.0001
## brain - liver 0.60085 0.0456 30 13.168 <.0001
## brain - muscle 0.74815 0.0456 30 16.396 <.0001
## brain - spinal cord 0.26915 0.0456 30 5.898 <.0001
## heart - kidney -0.22674 0.0456 30 -4.969 0.0003
## heart - liver -0.01995 0.0456 30 -0.437 0.9978
## heart - muscle 0.12735 0.0456 30 2.791 0.0868
## heart - spinal cord -0.35165 0.0456 30 -7.706 <.0001
## kidney - liver 0.20680 0.0456 30 4.532 0.0011
## kidney - muscle 0.35409 0.0456 30 7.760 <.0001
## kidney - spinal cord -0.12490 0.0456 30 -2.737 0.0971
## liver - muscle 0.14730 0.0456 30 3.228 0.0325
## liver - spinal cord -0.33170 0.0456 30 -7.269 <.0001
## muscle - spinal cord -0.47899 0.0456 30 -10.497 <.0001
##
## age.fac = Five:
## contrast estimate SE df t.ratio p.value
## brain - heart 0.54719 0.0456 30 11.992 <.0001
## brain - kidney 0.09619 0.0456 30 2.108 0.3104
## brain - liver 0.83686 0.0456 30 18.340 <.0001
## brain - muscle 0.57301 0.0456 30 12.557 <.0001
## brain - spinal cord 0.35992 0.0456 30 7.888 <.0001
## heart - kidney -0.45101 0.0456 30 -9.884 <.0001
## heart - liver 0.28967 0.0456 30 6.348 <.0001
## heart - muscle 0.02582 0.0456 30 0.566 0.9925
## heart - spinal cord -0.18728 0.0456 30 -4.104 0.0036
## kidney - liver 0.74068 0.0456 30 16.232 <.0001
## kidney - muscle 0.47682 0.0456 30 10.450 <.0001
## kidney - spinal cord 0.26373 0.0456 30 5.780 <.0001
## liver - muscle -0.26386 0.0456 30 -5.782 <.0001
## liver - spinal cord -0.47695 0.0456 30 -10.452 <.0001
## muscle - spinal cord -0.21309 0.0456 30 -4.670 0.0008
##
## age.fac = Ten:
## contrast estimate SE df t.ratio p.value
## brain - heart 0.64032 0.0456 30 14.033 <.0001
## brain - kidney 0.47072 0.0456 30 10.316 <.0001
## brain - liver 0.72444 0.0456 30 15.876 <.0001
## brain - muscle 0.64389 0.0456 30 14.111 <.0001
## brain - spinal cord 0.22952 0.0456 30 5.030 0.0003
## heart - kidney -0.16959 0.0456 30 -3.717 0.0097
## heart - liver 0.08412 0.0456 30 1.843 0.4548
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## heart - muscle 0.00358 0.0456 30 0.078 1.0000
## heart - spinal cord -0.41080 0.0456 30 -9.003 <.0001
## kidney - liver 0.25371 0.0456 30 5.560 0.0001
## kidney - muscle 0.17317 0.0456 30 3.795 0.0080
## kidney - spinal cord -0.24121 0.0456 30 -5.286 0.0001
## liver - muscle -0.08054 0.0456 30 -1.765 0.5021
## liver - spinal cord -0.49492 0.0456 30 -10.846 <.0001
## muscle - spinal cord -0.41438 0.0456 30 -9.081 <.0001
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: tukey method for comparing a family of 6 estimates

(Note that this approach does not strictly account for all multiple comparisons, because the Tukey method is
applied separately for each level of age.fac (14 comparisons) rather than for all 3*14 comparisons. This is
not ideal, and I’m looking into an approach to address this within emmeans. Of course, this is not an issue if
we do not control for multiple comparisons (the preferred approach for some scientists), by setting adjust =
"none" in the pairs() function.)

There’s a lot going on here. We’d report these results as usual (estimate, SE, df, t.ratio, p.value for each
contrast). But, we may get a better sense of what’s going on when we add confidence intervals:
confint(pairs(mys.emmeans))

## age.fac = Fifteen:
## contrast estimate SE df lower.CL upper.CL
## brain - heart 0.62080 0.0456 30 0.4820 0.7596
## brain - kidney 0.39406 0.0456 30 0.2553 0.5328
## brain - liver 0.60085 0.0456 30 0.4621 0.7396
## brain - muscle 0.74815 0.0456 30 0.6094 0.8869
## brain - spinal cord 0.26915 0.0456 30 0.1304 0.4079
## heart - kidney -0.22674 0.0456 30 -0.3655 -0.0880
## heart - liver -0.01995 0.0456 30 -0.1587 0.1188
## heart - muscle 0.12735 0.0456 30 -0.0114 0.2661
## heart - spinal cord -0.35165 0.0456 30 -0.4904 -0.2129
## kidney - liver 0.20680 0.0456 30 0.0680 0.3456
## kidney - muscle 0.35409 0.0456 30 0.2153 0.4929
## kidney - spinal cord -0.12490 0.0456 30 -0.2637 0.0139
## liver - muscle 0.14730 0.0456 30 0.0085 0.2861
## liver - spinal cord -0.33170 0.0456 30 -0.4705 -0.1929
## muscle - spinal cord -0.47899 0.0456 30 -0.6178 -0.3402
##
## age.fac = Five:
## contrast estimate SE df lower.CL upper.CL
## brain - heart 0.54719 0.0456 30 0.4084 0.6860
## brain - kidney 0.09619 0.0456 30 -0.0426 0.2350
## brain - liver 0.83686 0.0456 30 0.6981 0.9757
## brain - muscle 0.57301 0.0456 30 0.4342 0.7118
## brain - spinal cord 0.35992 0.0456 30 0.2211 0.4987
## heart - kidney -0.45101 0.0456 30 -0.5898 -0.3122
## heart - liver 0.28967 0.0456 30 0.1509 0.4285
## heart - muscle 0.02582 0.0456 30 -0.1130 0.1646
## heart - spinal cord -0.18728 0.0456 30 -0.3261 -0.0485
## kidney - liver 0.74068 0.0456 30 0.6019 0.8795
## kidney - muscle 0.47682 0.0456 30 0.3380 0.6156
## kidney - spinal cord 0.26373 0.0456 30 0.1249 0.4025
## liver - muscle -0.26386 0.0456 30 -0.4026 -0.1251
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## liver - spinal cord -0.47695 0.0456 30 -0.6157 -0.3382
## muscle - spinal cord -0.21309 0.0456 30 -0.3519 -0.0743
##
## age.fac = Ten:
## contrast estimate SE df lower.CL upper.CL
## brain - heart 0.64032 0.0456 30 0.5015 0.7791
## brain - kidney 0.47072 0.0456 30 0.3319 0.6095
## brain - liver 0.72444 0.0456 30 0.5856 0.8632
## brain - muscle 0.64389 0.0456 30 0.5051 0.7827
## brain - spinal cord 0.22952 0.0456 30 0.0907 0.3683
## heart - kidney -0.16959 0.0456 30 -0.3084 -0.0308
## heart - liver 0.08412 0.0456 30 -0.0547 0.2229
## heart - muscle 0.00358 0.0456 30 -0.1352 0.1424
## heart - spinal cord -0.41080 0.0456 30 -0.5496 -0.2720
## kidney - liver 0.25371 0.0456 30 0.1149 0.3925
## kidney - muscle 0.17317 0.0456 30 0.0344 0.3120
## kidney - spinal cord -0.24121 0.0456 30 -0.3800 -0.1024
## liver - muscle -0.08054 0.0456 30 -0.2193 0.0583
## liver - spinal cord -0.49492 0.0456 30 -0.6337 -0.3561
## muscle - spinal cord -0.41438 0.0456 30 -0.5532 -0.2756
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
## Conf-level adjustment: tukey method for comparing a family of 6 estimates

This output helps us understand the nature of the interaction. For example, let’s consider our observation
from the boxplot, above, where we noticed that the difference between expression in liver vs. muscle might be
different for ages ‘Fifteen’ vs. ‘Five’. At age ‘Fifteen’, the 95% CI’s for this difference (contrast is liver -
muscle) are 0.0085 and 0.2861. This implies that expression in liver is greater than in muscle at this time
point. But, at age ‘Five’ this contrast (liver - muscle) has 95% CI’s of -0.4026 and -0.1251. These negative
values imply that expression in liver is less than in muscle (opposite to what we found at time ‘Fifteen’).
This exemplifies why the interaction occurred: the effect of tissue depends on the level of age.fac (we
could show that ‘vice versa’ is also true if we’d analyzed the data in emmeans by tissue, instead). Moreover,
when we say that the the “effect of tissue depends on the level of age.fac”, we refer to the effect sizes
found for tissues: when effect sizes for comparisons among tissue levels differ among age.fac levels, this,
by definition, implies an interaction. Take some time now to look through these results more, yourself, to
find other possible causes of the interaction.

We would also report the 95% CI’s for the effect sizes, above, and interpret them biologically as much as
possible.
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