[bookmark: _GoBack]Workshop:  Practice General Linear Models

In this workshop, you have the opportunity to analyze up to 4 datasets, which cover themes from previous discussion of general linear models.  If you complete this work as part of a class, we encourage you to work in small groups.  

For each question, you should follow the general workflow for analyzing General Linear Models:

a) Familiarize yourself with the dataframe you’ve created.  Note the column names and the names of variables within columns. Think of what types of variables you have.
b) Plot the data as you’ve been shown in lectures.  Ask yourself:  Do any treatment appear different from others?  Do you think the data will meet the assumption of a normal distribution?
c) Think:  How should these data be analyzed to accomplish the scientific question posed to you?
d) Construct a statistical model, and use it to address your scientific question.  
a. Check your assumptions before looking at the final results
b. If your model does not meet the assumptions of your test, either: (i) transform the data until assumptions are met, or (ii) choose a new, and more appropriate statistical test.
c. Interpret the outcome of your model, including any necessary post-hoc tests (or produce an interaction plot),to identify and understand any differences that lie in your data.
e) What do you conclude?  Base your conclusions on both p-values and effect sizes.






1.  Chauvet et al (2016; J Neuroendocrinology) studied the level of expression of 2 genes (CDH1 and CDH2) that code for cell-adhesion molecules in samples taken from pituitary human tumours.  The tumours can be classified as invasive (“I”) vs. non invasive (“NI”).  They were sampled from two different types of tumours: either from growth hormone adenomas (“GH”) or prolactinomas (“PRL”, tumours that overproduce growth hormone or prolactin).  Hence, gene expression was examined for two types of “treatments”:  Invasiveness (I vs NI) and tumor phenotype (GH vs PRL).  All the tumours come from different patients, and the dataset contains at least 8 data points for each combination of Invasiveness and Phenotype categories.  Note that these data are unbalanced.

The data are in the file, “pitTumours.csv”.

Analyse these data to test whether gene expression of CDH1 (not CDH2, which is also in the dataset) depends on Invasiveness and Phenotype.  The expression of CDH1 is in the column, “CDH1”.

a) Upload the data into R.  
b) Follow the general workflow, outlined, above.  Hint:  consider a square-root transformation.
c) What do you conclude?







2.  Cook et al. (1993) studied the reduction of Hippocampal volume (as a %) in 107 patients with various forms of drug-resistant epilepsy.  The patients fell into one of 3 groups:  a) a record of childhood febrile seizures (“CFS”); b) childhood non-febrile seizures (“no CFS”); and no childhood seizures (“no seizures”).

The data are in the file, “seizuresCFS.csv”.

Analyze these data to determine whether the loss in Hippocampal volume differs among the groups.

a) Upload the data into R. 
b) Follow the general workflow, outlined, above.   Data expressed as a % are often better analyzed with an arcsine square-root transformation, as given here:  asin(sqrt((seiz$hippoVolumeRatio)/100))
c) What do you conclude?



3.  Mutations that occur during sperm production can be passed on to a father’s offspring.  Older human fathers have had more time to accumulate mutations in tissues that produce sperm cells.  As a result, we might predict that, on average, older fathers pass on more mutations to their offspring than younger fathers do.  Kong et al. (2012) used complete genome sequencing of 21 human father-offspring pairs to count the number of mutations given by fathers to their children.  Kong et al. (2012) also recorded each father’s age.

These data are recorded in the file, “mutations.csv”.

Analyse these data to test whether the number of mutations passed on by a father depends on the father’s age.

a) Upload the data into R.  
b) Follow the general workflow, outlined, above. 
c) What do you conclude?



4.    Mole rats are the only known mammals with distinct social classes.  Like bees, a single queen and a small number of males are the only reproducing individuals in a colony.  Remaining individuals, “workers”, do the work (gather food, defense care for the young, etc).  Recent data made researchers question whether there were actually two types of workers that appeared to differ in the amount of work they did: “worker” and “lazy”.  Scantlebury et al. (2006) wished to study the physiology of the two supposed worker types.  They were interested in two questions. Firstly,  they wished to examine the relationship between an individual’s mass and their daily energy expenditure.  Secondly, they  wished to know whether this relationship was the same for the two supposed worker classes.   Weight and energy expenditure  were evaluated for each mole rat, which was classified as either “worker” and “lazy”.  Note that the data are un-balanced.

These data are available in the file, “moleRats.csv”.

Analyse these data to test whether:  a) energy expenditure increases with body mass; b) whether this relationship differs between “worker” and “lazy” groups.

a) Upload the data into R.  
b) Follow the general workflow, outlined, above. 
a. NOTE:  the data have already been log-transformed, for convenience
b. It is possible to produce a scatterplot with different colours that represent different treatments.  To do this, we add the option “col” to a plot() function, and write a little function that uses different colours for different groups.  For this question, try this:  

plot(lnMass~lnEnergy, xlab="ln(Body mass)", ylab="ln(Energy expenditure)", pch=2, col=ifelse(caste=="worker", "red", "blue"),data=mr)

c) What do you conclude?



5. The figure, below, is found in the paper, Marland et al. (2020:  https://doi.org/10.1016/j.sbsr.2020.100375).  In it, the authors use 2 t-tests to interpret their results:  one t-test at time zero, and another t-test at time 24 hours.  In each case, they compare a measurement under two conditions:  Control vs. BSA treatment.  Although not explicitly stated in the text, they appear to use these two t-tests to demonstrate that the effect of BSA vs. control differs between the two time points, 0 vs. 24.  Is their approach appropriate to make this conclusion?  If not, how could they improve their approach?
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against an external Ag/AgCl RE in the rest periods between CA mea-
surements. Over 4 h the sensors gave an average steady-state current of 
−11.4  ±  0.8 nA (n = 8 sensors) in air-saturated PBS (Fig. 3e). To 
quantify individual sensor stability, the coefficient of variance (CoV, 
defined as [SD / Mean] × 100%) of the output from each sensor was 
also calculated, and gave a mean CoV of 12.2% over the 4 h mea-
surement period (n = 8 sensors). The RE potential remained very stable 
over the same period (Fig. 3f), with an average value of 
+74.8  ±  1.5 mV (n = 8 sensors), and a mean CoV of only 0.33% 
(n = 8 sensors). The measurements were then continued until sensor 
failure to investigate their lifetime. Ultimately the first element of the 
sensor to fail was the RE. A change in RE potential typically occurred 
quite suddenly, leading in turn to unreliable CA oxygen measurements 
as the WE bias could not be accurately set (Fig. S3). A difference in RE 
potential of more than ± 50 mV from its initial value was defined as the 
failure point, and gave a mean time-to-failure of 23.3 h (range 
5.1–64.5 h, n = 8 sensors). 



We next systematically explored how sensor performance may be 
affected by exposure to the in vivo environment. To test whether the 
sensor was susceptible to protein biofouling, we recorded oxygen 
measurements from sensors in air-saturated PBS containing bovine 
serum albumin (BSA). This is a well characterised, water soluble pro-
tein, commonly used as a surrogate to model biofouling. Air-saturated 
PBS alone was used as a control. Sensors exposed to BSA showed a 
significant decrease in steady-state WE current after 24 h (Fig. 4a), 
suggesting that biofouling due to non-specific protein adsorption may 
lower the sensitivity of the Nafion coated sensors. We then tested the 



interference effect of common electroactive compounds (hydrogen 
peroxide, urate, ascorbate, and paracetamol) that are found in vivo and 
known to affect electrochemical measurements. Compounds were dis-
solved in air-saturated PBS, and oxygen measurements were sequen-
tially performed in each solution in a randomised order. When com-
pared to PBS alone, we found that physiological concentrations of 
hydrogen peroxide (3 μM), ascorbate (45 μM), and paracetamol 
(100 μM) all had no significant effect on the steady-state WE current, 
while urate (375 μM) caused a significant decrease in the magnitude of 
the current (Fig. 4b). 



As the sensor was designed to be surgically implanted and remain in 
place during a course of radiotherapy, we finally tested whether it was 
adversely affected by sterilisation or irradiation. Ethylene oxide gas was 
used to sterilise the sensors as it is routinely used to sterilise medical 
equipment. Irradiation was performed under a clinical radiotherapy 
beam, using a dose of four fractions of 6 Gy. This fraction size is within 
the upper range typically delivered in human clinical use [42], and 
matches that used in previous work involving a sheep lung cancer 
model [43]. Following these treatments, the on-chip RE potential was 
unchanged (Fig. 5a), and the Nafion membrane was still impermeable 
to ferri/ferrocyanide anions (Fig. 5b), indicating that its physical in-
tegrity and selectivity had not been compromised. Using CV in PBS we 
observed that the expected oxygen reduction features were still evident 
(Fig. 5c), and that the corresponding CA steady-state oxygen current at 
−0.5 V (vs the on-chip Ag/AgCl RE) was also unchanged (Fig. 5d), 
showing that the electrodes were undamaged. 



3.3. In vivo validation 



Bench characterisation showed that the sensor could report oxygen 
concentration in solution effectively over many hours. We therefore 
next tested whether the sensor was sufficiently robust to operate in vivo 
and detect dynamic changes in tissue oxygenation. We used a novel 
clinically relevant ovine model of lung cancer [38], developed specifi-
cally for this project. Tumours in three sheep with naturally occurring 
pre-clinical ovine pulmonary adenocarcinoma were implanted with 
either one sensor (Cases F1 & F2) or two sensors (Case F3). Each sensor 
was implanted under anaesthesia using a Jamshidi needle using CT 
guidance (Fig. 6a,b). The sheep were initially maintained at a target 
FiO2 of 1.00, then exposed to a protocol of mild graded tissue hypoxia 
by stepping their FiO2 down to 0.50 and then 0.21, before being re-
turned to an FiO2 of 1.00 (Fig. 6c). Arterial blood analysis showed the 
expected changes in oxygenation (Fig. 6d and Fig. S4a), while other 
relevant physiological variables did not change significantly (Fig. S4b- 
e). During the protocol, measurements were repeatedly made from the 
sensors using CA and all gave measurable real-time outputs (Fig. S5). 
Interestingly, there was substantial variability between cases and so 
readings from each sensor were analysed independently. Both sensors 
in Case F3 showed low initial currents which did not respond to 
changes in FiO2, while the sensors in Cases F1 and F2 showed a rela-
tively higher initial current with partially reversible decreases at lower 
FiO2 values and a decrease following euthanasia (Fig. 6e). These dif-
ferences reflect the expected heterogeneity of tumour hypoxia and 
oxygen responsiveness. 



To confirm that the sensors survived the tumour implantation pro-
cedure they were recovered following euthanasia, gently rinsed in 
water, and tested. Their surfaces showed the presence of some con-
tamination (Fig. 7a), likely derived from lung tissue at the implant site. 
CV in air-saturated PBS showed the expected presence of oxygen re-
duction at negative potentials for all sensors (Fig. 7b). The mean steady- 
state CA current showed greater variability between sensors post-im-
plantation but was not significantly different to its pre-implantation 
value (Fig. 7c). Together these results demonstrate that the packaged 
sensor is sufficiently physically robust to remain functional throughout 
a clinically realistic implantation procedure. 



Fig. 4. Effect of protein biofouling and interferents on sensor performance. (a) 
Mean WE steady-state current at −0.5 V (vs on-chip Ag/AgCl RE) in PBS 
(Control) or 35 mg/mL BSA in PBS (BSA), showing effect of protein biofouling 
at the start (0 h) and end (24 h) of the experiment (n = 3 sensors for each 
condition). Error bars represent SD between sensors. (b) Mean WE steady-state 
current at −0.5 V (vs on-chip Ag/AgCl RE) in PBS (Cont), and PBS containing 
3 μM hydrogen peroxide (HP), 375 μM urate (U), 45 μM ascorbate (A), or 
100 μM paracetamol (P) (n = 4 sensors for each treatment). Error bars re-
present SD between sensors. Statistical comparisons were made to the PBS 
(Control) condition. 
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