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NOTE: Datasets and their explanations for Questions 2 - 4 were drawn from Whitlock &
Schluter’s text, “The analysis of biological data” (a recommended book for undergraduates
and graduate students, alike).

Question 1 - GENE EXPRESSION
This experiment aims to test whether gene expression for the gene CDH1 differs between tumor types
(Phenotype, which has two levels: GH vs.PRL); it also aims to test whether gene expression differs between
a tumor’s Invasiveness: non-invasive, NI vs. invasive, I. The experiment collected data for all 4 possible
combinations of these two Factors. We can see these factors, and the response (CDH1, i.e., a measure of
expression for this gene) in the output, below:
pit <- read.table("pitTumours.csv",sep=',',header=TRUE)
str(pit)

## 'data.frame': 50 obs. of 4 variables:
## $ Phenotype : chr "GH" "GH" "GH" "GH" ...
## $ Invasiveness: chr "I" "NI" "NI" "NI" ...
## $ CDH1 : num 40.7 487 1247.1 1008.3 1016.1 ...
## $ CDH2 : num 38.61 9.05 121.74 244.62 78.37 ...
summary(pit)

## Phenotype Invasiveness CDH1 CDH2
## Length:50 Length:50 Min. : 0.9113 Min. : 0.000
## Class :character Class :character 1st Qu.: 96.0359 1st Qu.: 5.995
## Mode :character Mode :character Median : 236.6585 Median : 28.586
## Mean : 388.6692 Mean : 75.597
## 3rd Qu.: 526.5761 3rd Qu.: 63.865
## Max. :1931.4788 Max. :667.798
head(pit)

## Phenotype Invasiveness CDH1 CDH2
## 1 GH I 40.72132 38.61383
## 2 GH NI 486.97786 9.04871
## 3 GH NI 1247.11522 121.74447
## 4 GH NI 1008.30220 244.61669
## 5 GH NI 1016.09776 78.36605
## 6 GH I 276.05721 93.19346

We can see from the output of str() that the Factors, Phenotype and Invasiveness are class chr, but we
want them to be Factors. Let’s convert them to Factors and check out efforts:
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pit$Invasiveness <- factor(pit$Invasiveness)
pit$Phenotype <- factor(pit$Phenotype)
str(pit)

## 'data.frame': 50 obs. of 4 variables:
## $ Phenotype : Factor w/ 2 levels "GH","PRL": 1 1 1 1 1 1 1 1 1 1 ...
## $ Invasiveness: Factor w/ 2 levels "I","NI": 1 2 2 2 2 1 1 2 2 1 ...
## $ CDH1 : num 40.7 487 1247.1 1008.3 1016.1 ...
## $ CDH2 : num 38.61 9.05 121.74 244.62 78.37 ...

Excellent! They are both Factors now.

We’re told that the data are independent, and we’ll assume that they’re randomly sampled. As we have two
factors (Phenotype and Invasiveness), we will try to analyze these data using a 2-factor GLM.

First, let’s look at the sample size for each treatment combination:
table(pit$Phenotype, pit$Invasiveness)

##
## I NI
## GH 12 13
## PRL 8 17

Note:

• the experiment has all 4 treatment combinations;
• we have at least 2 data points for each treatment combination; this is required to model an interaction

between the factors;
• as noted in the question, the data are unbalanced.

Now, let’s plot the data. Our hypothesis is that gene expression (CDH1) will be affected by the tumor’s
invasiveness status (Invasiveness) and type (Phenotype). Therefore, we’re saying that CDH1 (expressions)
will depend on Invasiveness and Phenotype; i.e., CDH1 is the dependent variable:
boxplot(CDH1 ~ Phenotype*Invasiveness, data=pit,cex.axis = 1.2, ylab = "")
stripchart(CDH1 ~ Phenotype*Invasiveness, data=pit,
vertical = TRUE, method = "jitter",
pch = 21, col = "maroon", bg = "bisque",
add = TRUE)
mtext("CDH1 expression",2,line=2.5,cex=1.5)
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What do we notice from this plot?

• The data likely violate the assumptions of equal variance; the boxplots have different breadths (also,
notice that the breadth increases with the mean - often a sign of needing to transform the data).

• No outliers
• The boxplots are fairly asymmetrical; residuals are likely not normally distributed
• It looks like there may be in interaction between Phenotype and Invasiveness: notice that when

Invasiveness is I (‘invasive’; the boxplots on the left), the PRL phenotype tends to have higher
expression than the GH phenotype; but (!) the opposite appears to be true when Invasiveness is NI
(non-invasive).

Let’s model the data to determine whether our hunches about the assumptions are correct (modeling the two
factors and their interaction); remember that CDH1 is the dependent variable (and goes to the left of the tilda,
~):
pit.lm <- lm(CDH1 ~ Phenotype*Invasiveness, data=pit)

Let’s check the assumptions:
plot(pit.lm)
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The assumptions are not met well at all: the first plot shows that the variance increases with the fitted values
(violates assumption of similar variance among groups); the second plot shows strong deviation from a normal
distribution (ideally, we want all points to fall along the dotted line). The third plot also indicates the data
violate the assumption os equal variance (notice the red line is not flat).

Let’s try transforming the data. We’ll try a sqrt() (square-root) transformation:
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p1.s <- lm(sqrt(CDH1) ~ Phenotype*Invasiveness, data=pit)
plot(p1.s)
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The assumptions are now OK: The first plot shows that variance is relatively similar among the four treatment
groups (i.e., the vertical spread is similar among the 4 vertical lines of residuals); the second plot shows that
normality is not ideal, but not too terrible, either. The third plot is OK - the red line is not quite as flat as
we’d like, but it is probably OK with respect to the assumption of equal variance.

Remember that we have an unbalanced design. As a result, we will use the following code to use for Type 3
Sum-of Square to calculate our p-values:
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pit.lm.sq <- lm(sqrt(CDH1) ~ Phenotype*Invasiveness, data=pit, contrasts =
list(Phenotype = contr.sum, Invasiveness = contr.sum))

library(car)

## Loading required package: carData
Anova(pit.lm.sq, type = 3)

## Anova Table (Type III tests)
##
## Response: sqrt(CDH1)
## Sum Sq Df F value Pr(>F)
## (Intercept) 12238.6 1 152.7300 3.207e-16 ***
## Phenotype 0.0 1 0.0003 0.9870611
## Invasiveness 1176.2 1 14.6782 0.0003847 ***
## Phenotype:Invasiveness 519.6 1 6.4839 0.0142981 *
## Residuals 3686.1 46
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The results provide moderate evidence for an interaction between Phenotype and Invasiveness (p = 0.0142981).
Let’s look at in interaction plot to understand why (note that we sqrt transform the data in the interaction
plot, too):
attach(pit)
interaction.plot(Phenotype,Invasiveness,sqrt(CDH1),type='b',legend=TRUE)
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This plot suggests that the interaction arises because Invasiveness more strongly impacts gene expression
of the GH phenotype than the PRL phenotype. (We can see this in the boxplot, above, too: Notice the large
difference between GH.I vs. GH.NI, whereas the difference between PRL.I and PRL.NI is less pronounced.)

With a general understanding of the results in hand, we should now obtain estimates of our effect sizes; exactly
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which effect sizes we calculate, however, will depend on the focus of our biological interests / hypotheses.
Let’s imagine that we were primarily interested in the differences between Invasiveness levels; in this case
we could determine effect sizes for differences between I and NI separately for each level of Phenotype (as
we saw in the interaction plot). We will investigate this perspective, below. (Note that we could swap
Invasiveness and Phenotype to investigate the effect sizes for Phenotype; we’ll not perform this analysis
simply to save space.)
library(emmeans)
pit.emmeans.in <- emmeans(pit.lm.sq, "Invasiveness", by = "Phenotype")
pit.emmeans.in

## Phenotype = GH:
## Invasiveness emmean SE df lower.CL upper.CL
## I 7.83 2.58 46 2.63 13.0
## NI 24.57 2.48 46 19.58 29.6
##
## Phenotype = PRL:
## Invasiveness emmean SE df lower.CL upper.CL
## I 14.56 3.16 46 8.19 20.9
## NI 17.93 2.17 46 13.56 22.3
##
## Results are given on the sqrt (not the response) scale.
## Confidence level used: 0.95

These results provide the emmean gene expressions (and SE) for CDH1 for each treatment combination. Note
that these means are on the transformed (sqrt) scale. We can back-transforming square-root transformed
data in emmeans, but this involves ‘re-gridding’, which we will not demonstrate; see here: https://cran.r-
project.org/web/packages/emmeans/vignettes/transformations.html

Now, we wish to obtain estimates of the differences between the two levels of Invasiveness (i.e., ‘contrasts’,
or effect size) with their SE’s, as well as p-values:
pit.pairs.in <- pairs(pit.emmeans.in)

## Note: Use 'contrast(regrid(object), ...)' to obtain contrasts of back-transformed estimates
pit.pairs.in

## Phenotype = GH:
## contrast estimate SE df t.ratio p.value
## I - NI -16.74 3.58 46 -4.672 <.0001
##
## Phenotype = PRL:
## contrast estimate SE df t.ratio p.value
## I - NI -3.37 3.84 46 -0.879 0.3840
##
## Note: contrasts are still on the sqrt scale

These results provide the effect size (and SE) for the difference between the I and NI levels of Invasiveness,
calculated separately for each type of Phenotype. Note that, as we saw, above, the difference between I and
NI is much greater for Phenotype GH; in fact, formally, we do have any evidence for a difference between NI
and I for Phenotype at level, PRL. We can also obtain the 95% CI’s for these effect sizes:
confint(pit.pairs.in)

## Phenotype = GH:
## contrast estimate SE df lower.CL upper.CL
## I - NI -16.74 3.58 46 -24.0 -9.53
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##
## Phenotype = PRL:
## contrast estimate SE df lower.CL upper.CL
## I - NI -3.37 3.84 46 -11.1 4.35
##
## Note: contrasts are still on the sqrt scale
## Confidence level used: 0.95

The difference of (square-root transformed) gene expression for gene CDH1 between NI and I ranges from
-24.0 to -9.53 when Phenotype is GH; but the comparable 95% CI for the effect size in Phenotype PRL is less
pronounced, and includes 0 as a possible difference: -11.1 to 4.35. Are these ‘important’ effects? That’s hard
for me to say, as I know very little about tumors; but presumably another biologist could use these effect size
estimates (and 95% CI’s) to gain a sense of the biological impact of Phenotype and Invasiveness in this
experiment.

Question 2
In this experiment, Cook et al. (1993) wished to compare a hippocampal volume loss (expressed as a percent)
in patients with drug-resistant epilepsy among subjects with different histories of seizures: a history of
childhood febrile seizures (CFS), childhood non-febrile seizures (No CFS), and No seizures.

Let’s look at the data:
seiz <- read.table("seizuresCFS.csv",sep=',',header=TRUE)
str(seiz)

## 'data.frame': 107 obs. of 3 variables:
## $ subject : int 1 2 3 4 5 6 7 8 9 10 ...
## $ group : chr "CFS" "CFS" "CFS" "CFS" ...
## $ hippoVolumeRatio: num 47 51.2 55.3 56.5 56.6 56.6 59.4 60.7 64.7 59.4 ...
summary(seiz)

## subject group hippoVolumeRatio
## Min. : 1.0 Length:107 Min. : 47.00
## 1st Qu.: 27.5 Class :character 1st Qu.: 88.00
## Median : 54.0 Mode :character Median : 96.40
## Mean : 54.0 Mean : 89.61
## 3rd Qu.: 80.5 3rd Qu.: 98.45
## Max. :107.0 Max. :100.00
head(seiz)

## subject group hippoVolumeRatio
## 1 1 CFS 47.0
## 2 2 CFS 51.2
## 3 3 CFS 55.3
## 4 4 CFS 56.5
## 5 5 CFS 56.6
## 6 6 CFS 56.6

This output reveals three columns: subject (which we will ignore as it is not useful to us), group, which
designates a subject’s history of seizures, and hippoVolumeRatio, the measure of hippocampal volume loss.
Note that smaller values of hippoVolumeRatio denote greater volume loss.

Note that the str() function indicates that group is currently type chr; let’s change it to a Factor:
seiz$group <- factor(seiz$group)
str(seiz)
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## 'data.frame': 107 obs. of 3 variables:
## $ subject : int 1 2 3 4 5 6 7 8 9 10 ...
## $ group : Factor w/ 3 levels "CFS","no CFS",..: 1 1 1 1 1 1 1 1 1 2 ...
## $ hippoVolumeRatio: num 47 51.2 55.3 56.5 56.6 56.6 59.4 60.7 64.7 59.4 ...

OK - group is now a Factor, which is what we want.

Let’s plot the data. The hypothesis is that the volume loss will depend on the history of seizures (group);
therefore, hippoVolumeRatio is the dependent variable:
boxplot(hippoVolumeRatio ~ group, data=seiz,cex.axis = 1.2, ylab = "", ylim = c(0,100))
stripchart(hippoVolumeRatio ~ group, data=seiz,
vertical = TRUE, method = "jitter",
pch = 21, col = "maroon", bg = "bisque",
add = TRUE)
mtext("Hippocampal volume ratio (%)",2,line=2.5,cex=1.5)
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Recall that the data are expressed as a percent. As a result, we do not expect the data to be normally
distributed, and the boxplot, above, matches this expectation (boxplots loox asymmetrical). Let’s try
transforming the data and inspecting the plot, again, before we run our model. An arcsine-square root
transformation can be helpful for proportions; to use this transformation, we need to remember to change the
data from a percent to a proportion by dividing all data by 100 before applying the transformation:
boxplot(asin(sqrt(hippoVolumeRatio/100)) ~ group, data=seiz,cex.axis = 1.2, ylab = "")
stripchart(asin(sqrt(hippoVolumeRatio/100)) ~ group, data=seiz,
vertical = TRUE, method = "jitter",
pch = 21, col = "maroon", bg = "bisque",
add = TRUE)
mtext("Hippocampal volume ratio (%)",2,line=2.5,cex=1.5)
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seiz$Asin <- asin(sqrt(seiz$hippoVolumeRatio/100))

Before continuing, please note that we assess assumption by looking at residual plots, not from simply looking
at plots of the data, like those, above. Indeed, we will formally check the assumptions using residual plots,
below. Why did we try transforming the data this time, after examining the boxplots? Well, it has to do with
the fact that we knew at the beginning the the data are expressed as proportions; this knowledge leads us to
expect non-normally distributed data, even without plotting the data! We also know that arcsine square-root
transformation can be an effective way to deal with data such as these. So it is this a priori knowledge that
the data were proportions that led us to transform the data at this stage, not the plots, per se. That said, we
could have tried to model the data without transforming before we used arcsine square-root.

This plot suggests that the data will now meet our assumptions. Here’s what I notice:

• The breadth of the boxplots is roughly similar, suggesting that the data will meet the assumption of
equal variance;

• The boxplots are roughly symmetrical, suggesting that the transformed data will meet the assumption
of normality;

• There are a few unusual data-points (exceptionally large values for CFS, and some unusually small
values for No CFS and No seizures), but these are not too great

• We might predict that hippocampal volume loss will be great for CSF (has history of febrile seizures)
compared to the remaining groups, which lacked pre-febrile seizures; the latter two groups likely differ
little.

Let’s check our predictions when we model our data. Again, remember that hippoVolumeRatio (transformed)
is the dependent variable:
seiz.lm <- lm(asin(sqrt(hippoVolumeRatio/100)) ~ group, data=seiz)
plot(seiz.lm)
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• The first plot suggests that the data likely meet the assumption of equal variance, but, to be honest,
I’m not 100% certain. I find this a tough call. If I aimed to publish these data, I would be tempted
to use another approach (e.g., a type of randomization test that is suitable for 1-factor experiments)
to analyze these data because I don’t fully trust that the data meet the assumption of equal variance.
But, we’ve not learned that yet. So, we’ll press on, simply to hone our skills with 1-factor GLM’s.
(Besides, this example has also taught you that sometimes we might need to find an alternate approach
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if transformation does not work - that’s a worthwhile lesson.)
• The residuals look relatively normally distributed (see the second plot)
• The third plot confirms our worries from the first plot: the red line is not terribly flat, and the data

likely violate the assumption of equal variance. But, for reasons given in discussion of plot 1, we’ll carry
on, remembering that we’d be more cautious if we aimed to actually publish these data.

If we assume that the assumptions are met, we can check our p-values:
anova(seiz.lm)

## Analysis of Variance Table
##
## Response: asin(sqrt(hippoVolumeRatio/100))
## Df Sum Sq Mean Sq F value Pr(>F)
## group 2 1.5853 0.79265 30.072 4.943e-11 ***
## Residuals 104 2.7412 0.02636
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-value is very small (p = 4.943e-11), providing very strong evidence that the (transformed) means differ
among some levels of group (that is, if we trust our assumptions, which is questionable. But anyway. . . ).
It is comforting, at least, that we predicted some differences among levels of group based on our boxplots.
Let’s do a post-hoc test to further test our original predictions:
library(emmeans)
seiz.emmeans <- emmeans(seiz.lm, "group")

## Warning in (function (object, at, cov.reduce = mean, cov.keep = get_emm_option("cov.keep"), : There are unevaluated constants in the response formula
## Auto-detection of the response transformation may be incorrect
seiz.emmeans

## group emmean SE df lower.CL upper.CL
## CFS 1.04 0.0363 104 0.972 1.12
## no CFS 1.32 0.0383 104 1.245 1.40
## no seizures 1.36 0.0195 104 1.323 1.40
##
## Results are given on the asin(sqrt(mu)) (not the response) scale.
## Confidence level used: 0.95

This output provides the emmean for each level of group (and SE), on the transformed data scale. As we saw
in our plot, hippocampal volume seems to have decreased most for CFS subjects; inspecting the SE’s (and
remembering that a 95% CI can be roughly equal to twice the size of the SE), we do not expect any strong
evidence between No CFS and No seizure, but we do expect evidence that these group levels differ from
CFS. Let’s check this expectation using the pairs() function:
seiz.pairs <- pairs(seiz.emmeans)

## Note: Use 'contrast(regrid(object), ...)' to obtain contrasts of back-transformed estimates
seiz.pairs

## contrast estimate SE df t.ratio p.value
## CFS - no CFS -0.277 0.0527 104 -5.259 <.0001
## CFS - no seizures -0.318 0.0412 104 -7.721 <.0001
## no CFS - no seizures -0.041 0.0430 104 -0.953 0.6081
##
## Note: contrasts are still on the asin.sqrt scale
## P value adjustment: tukey method for comparing a family of 3 estimates
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These results indicate the effect sizes of group with their SE’s; we should report these values, and remember
to tell a reader that these values are on the transformed scale. Note that the size of the difference between CFS
and the remaining two treatments (No CFS and No seizures) is much greater than any possible difference
between the latter two treatment levels. The p-values also provide strong evidence that CFS differs from the
remaining two treatments, but no evidence that these latter treatments (no CFS, no seizures) differ from
each other.

Let’s get some 95% CI’s for these effect sizes and see what else we can learn:
confint(seiz.pairs)

## contrast estimate SE df lower.CL upper.CL
## CFS - no CFS -0.277 0.0527 104 -0.403 -0.1520
## CFS - no seizures -0.318 0.0412 104 -0.416 -0.2203
## no CFS - no seizures -0.041 0.0430 104 -0.143 0.0612
##
## Note: contrasts are still on the asin.sqrt scale
## Confidence level used: 0.95
## Conf-level adjustment: tukey method for comparing a family of 3 estimates

The range of 95% CI’s for the difference between CFS and no CFS (-0.403 to -0.1520) is very similar to the
interval for CFS and no seizures (-0.416 to -0.2203); this is consistent with a conclusion that the no CFS
and no seizures are similarly different from CFS. Note that the 95% CI’s for the difference between No CFS
and No seizures is range from -0.143 to 0.0612, which includes zero; therefore, it is plausible that there
is no difference in hippocampal volume loss for these two groups. However, this 95% CI mostly includes
negative values (i.e., this 95% CI is not centered on zero.) As this 95% CI was based on the contrast, ‘no CFS
- no seizures’, a tendency towards a negative value would suggest a tendency towards less hippocampal loss
for individuals in the no seizures group. This tendency might be worth remembering for future research.

Let’s end by considering the experimental design in a bit more detail. We had three levels of group:

• CFS, which had febrile seizues
• no CFS, which has seizures but not febrile seizures
• no seizures, which had no seizures (febrile or otherwise).

The no CFS serves as a Control treatment in this experiment: if we only compared CFS to no seizures there
could be two differences between them: 1) the presence of seizures, and 2) the febrile nature of the seizures in
CFS. With only these two treatments we cannot infer whether seizures, per se, decrease hippocampal volume,
or whether febrile seizures decrease volume. This is where the group, no CFS is so useful: this group had
seizures, but they were not febrile. The fact that hippocampal volume loss was very similar between no CFS
and no seizures suggests that seizures, per se, have little effect on hippocampal volume loss (see
the 95% CI’s for the contrast between no CFS and no seizures). In contrast, we did see larger losses in
hippocampal value when febrile seizures were present (in the CFS group), which would imply that it is the
febrile nature of seizures that especially leads to hippocampal volume loss.

Question 3 - MUTATIONS
This experiment aims to test whether the number of mutations that are passed on to human offspring is
related to the age of the offspring’s father at the time of fertilization. Why would we be so interested in the
father’s age, and perhaps less interested in the mother’s age in this respect? The answer has to do with
meiosis: males continually produce new gametes (sperm) throughout their lives, and this repeated cell-division
increases the opportunity for mutations to accumulate in the cells that produce sperm. As males get older,
there’s more time for mutations to arise in these male cells. On the other hand, females are born with all
of their eggs already produced, so opportunity for these types of mutations (single-nucleotide mutations, I
assume) does not increase with age in females. Cool, eh?

Let’s get to know the data:
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mut <- read.table("mutations.csv",sep=',',header=TRUE)
str(mut)

## 'data.frame': 21 obs. of 2 variables:
## $ AgeOfFather : int 16 18 20 19 22 24 24 24 25 28 ...
## $ numberOfNewMutations: int 39 41 39 49 50 54 55 61 57 52 ...
summary(mut)

## AgeOfFather numberOfNewMutations
## Min. :16.0 Min. :39.0
## 1st Qu.:24.0 1st Qu.:52.0
## Median :28.0 Median :57.0
## Mean :27.1 Mean :58.1
## 3rd Qu.:32.0 3rd Qu.:67.0
## Max. :37.0 Max. :83.0
head(mut)

## AgeOfFather numberOfNewMutations
## 1 16 39
## 2 18 41
## 3 20 39
## 4 19 49
## 5 22 50
## 6 24 54

This output reveals that the dataframe, mut, has only two variables, whose names are self-explanatory:
AgeOfFather and numberOfNewMutations.

With this is mind, we should start by plotting our data. However, when plotting these data we need to
consider which variable is the dependent variable? Are we hypothesizing that:

1) the father’s age will affect the number of mutations? Or. . .
2) the number of mutations will determine the father’s age?

The first option makes more sense; therefore, numberOfNewMutations is the dependent variable and will be
listed first in out plot commands and our models:
plot(numberOfNewMutations~AgeOfFather,data=mut)
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We see that the number of mutations seem to increase with age! Moreover, the relationship appears to be a
straight line, suggesting that we can eaily model this relationship as:
mut.lm <- lm(numberOfNewMutations~AgeOfFather,data=mut)

We’ll assume (from the original research) that subjects were chosen randomly and are independent. Therefore,
let’s check the assumptions of equal variance and normality:
plot(mut.lm)
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These plots suggets that the assumptions seem OK:

• The first plot suggests the variance of the residuals (the vertical spread of residual) is relatively similar
along the x-axis, suggesting equal variance. Notice one unusual residual, with the number, 17 beside
it; the ‘17’ indicates that this unusual measurement lies on line 17 of the dataframe, mut. If we were
worried that this measurement affected our conclusions, we could run the analysis a second time without
this observation and compare the results: if the conclusions are the same, we will know that observation
17 has little impact on our conclusions. If, instead, the conclusions differ markedly, then we’d conclude
that observation 17 strongly affects our conclusions as we should report the results from both analyses
(i.e., with and without observation 17) to let the reader decide how to interpret the results. -The
second plot suggests that normality is OK. . . this plot is a bit ugly, but overall is OK. This alternative
plot (hist(resid(mut.lm))), below, suggests the residuals are a bit skewed, nut, normality is likely
sufficient.

• The third plot generally looks OK (i.e., indicated equal variance), but the wobble in the red line draws
our attention to observation 17 again. To save space (and your reading), we will not analyze the data
twice (with and without observation 17), but you should give this a try!

hist(resid(mut.lm))
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Let’s check the results from this model:
anova(mut.lm)

## Analysis of Variance Table
##
## Response: numberOfNewMutations
## Df Sum Sq Mean Sq F value Pr(>F)
## AgeOfFather 1 1818.33 1818.33 38.754 5.584e-06 ***
## Residuals 19 891.48 46.92
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Based on the small p-value, we have strong evidence that AgeOfFather is related to the number of mutations
passed to offspring.

NOTE that anova() does not give estimates of the slope or intercept. To obtain these estimates, use
summary():
summary(mut.lm)

##
## Call:
## lm(formula = numberOfNewMutations ~ AgeOfFather, data = mut)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.865 -4.859 -1.534 2.221 20.307
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.2090 7.0494 2.157 0.044 *
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## AgeOfFather 1.5828 0.2543 6.225 5.58e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.85 on 19 degrees of freedom
## Multiple R-squared: 0.671, Adjusted R-squared: 0.6537
## F-statistic: 38.75 on 1 and 19 DF, p-value: 5.584e-06

This output indicates that the slope of the line fitted through the data has a y-intercept of 15.2090 (SE =
7.0494) and a slope of 1.5828 (SE = 0.2543).

Think about what that slope means. It indicates that for every year that a father ages, we can expect (on
average) that he’ll pass on 1.58 more mutations to his offspring. That seems like a big effect if age (especially
given that the maximum number of new mutations in the dataset is only 83)! Moreover, this dataset does
not have particularly old fathers: the age of fathers ranges from 16 to 37, which seems relatively young to me
(I was 40 when we had our second child)! If this trend continues for older fathers, the overall difference in
mutation numbers passed to offspring from young vs. much older fathers will be even greater.

Question 4 - MOLE-RATS
This question involves mole rats, which are mammals with distinct social castes (like bees, with a Queen,
workers and male bees). The only individuals in a colony that reproduce include a single queen with several
males that she mates with. Everyone else is a “worker”, who do everything from gather food to care for the
young to defend the colony. However, it is possible that “workers” come in at least two varieties: “frequent”
and “infrequent” workers. Scantlebury et al. (2006) wished to test whether aspects of physiology differed
between these two putative types of workers. They measured daily energy expenditure for individuals believed
to belong to the two types of workers. They also measured body mass because they expected that body mass
will affect energy expenditure, and they wished to account for this possible effect when testing for differences
in physiology between the two (putative) types of workers.

Here are the data:
mr <- read.table("moleRats.csv",sep=',',header=TRUE)
str(mr)

## 'data.frame': 35 obs. of 3 variables:
## $ caste : chr "worker" "worker" "worker" "worker" ...
## $ lnMass : num 3.85 3.99 4.11 4.17 4.25 ...
## $ lnEnergy: num 3.69 3.69 3.69 3.66 3.87 ...
summary(mr)

## caste lnMass lnEnergy
## Length:35 Min. :3.850 Min. :3.555
## Class :character 1st Qu.:4.248 1st Qu.:3.902
## Mode :character Median :4.511 Median :4.190
## Mean :4.540 Mean :4.193
## 3rd Qu.:4.844 3rd Qu.:4.489
## Max. :5.263 Max. :5.043
head(mr)

## caste lnMass lnEnergy
## 1 worker 3.850148 3.688879
## 2 worker 3.988984 3.688879
## 3 worker 4.110874 3.688879
## 4 worker 4.174387 3.663562
## 5 worker 4.248495 3.871201
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## 6 worker 4.262680 3.850148

We can see that the column caste denotes the two worker types: lazy and worker. The data in columns
lnMass and lnEnergy denote each mole rat’s mass and energy expenditure, respectively; both variables have
already been log-transformed. We notice that the variable, caste is currently type, chr; let’s change it to a
Factor:
mr$caste <- factor(mr$caste)
str(mr)

## 'data.frame': 35 obs. of 3 variables:
## $ caste : Factor w/ 2 levels "lazy","worker": 2 2 2 2 2 2 2 2 2 2 ...
## $ lnMass : num 3.85 3.99 4.11 4.17 4.25 ...
## $ lnEnergy: num 3.69 3.69 3.69 3.66 3.87 ...

Now that that data are in the state we wish, let’s plot the data. lnEnergy will be the dependent variable:
plot(lnEnergy~lnMass, xlab="ln(Body mass)", ylab="ln(Energy expenditure)",

pch=20, col=ifelse(caste=="worker", "red", "blue"),data=mr)
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These data indicate that:

• the energy expenditure of worker mole rats (red points in the plot) tend to be higher than their lazy
counterparts (blue points).

• energy expenditure seems to increase with body mass for both caste types
• it is difficult to predict whether the slopes will be different for the two caste types, as there are too

few data to guess effectively. We’ll need to run a model to learn more.

Let’s model the data; for now, we’ll not use type 3 sum of squares (we’ll do that later when we calculate
p-values):
mr.lm <- lm(lnEnergy~lnMass + caste + lnMass:caste,data=mr)
plot(mr.lm)
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We’ll follow the author’s lead and say that the data are randomly selected and independent. What about
equal variance and normality of residuals?

• The first plot shows that the variance (i.e., vertical spread of the residuals) is relatively equal along the
x-axis, implying that the data meet the assumption of equal variance;

• The second plot suggests that the residuals are nicely normally distributed.
• The third plot also indicates that the data meet the assumption of equal variance.
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Now that we’re satisfied that the data meet the assumptions, let’s check our results:
summary(mr.lm)

##
## Call:
## lm(formula = lnEnergy ~ lnMass + caste + lnMass:caste, data = mr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.72004 -0.17990 0.05631 0.19551 0.43128
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2939 1.6691 0.775 0.4441
## lnMass 0.6069 0.3428 1.771 0.0865 .
## casteworker -1.5713 1.9518 -0.805 0.4269
## lnMass:casteworker 0.4186 0.4147 1.009 0.3206
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2965 on 31 degrees of freedom
## Multiple R-squared: 0.4278, Adjusted R-squared: 0.3725
## F-statistic: 7.727 on 3 and 31 DF, p-value: 0.0005391

The intercept refers to the y-intercept of lazy caste members; likewise, the coefficient lnMass refers to the
slope for lazy mole rats, which equals 0.6069. The slope for worker mole rats equals 0.6069 + 0.4186 =
1.0255. These slopes do seem to be different (one slope is two-thirds larger than the other). But, these
slopes were estimated with relatively small sample sizes (only 14 and 21 individuals in the two caste
groups), so this apparent difference in slopes may simply arise due to sampling error. Indeed, the p-value for
lnMass:casteworker equals, 0.3206, indicating little evidence that the slopes differ. Let’s calculate p-values,
remembering to use type 3 sum of squares (remember to add the contrasts option to our linear model):
mr.lm.t3 <- lm(lnEnergy~lnMass+caste+lnMass:caste,data=mr,

contrasts = list(caste = contr.sum))

library(car)
Anova(mr.lm.t3, type = 3)

## Anova Table (Type III tests)
##
## Response: lnEnergy
## Sum Sq Df F value Pr(>F)
## (Intercept) 0.02385 1 0.2713 0.6061609
## lnMass 1.36179 1 15.4922 0.0004363 ***
## caste 0.05696 1 0.6481 0.4269408
## lnMass:caste 0.08956 1 1.0188 0.3206094
## Residuals 2.72494 31
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-value for the interaction (p = 0.3206094) indicates that we have very little evidence to suggest that the
slopes for the relationship between lnMass and lnEnergy differs between the caste types (it also matches
the output from summary(mr.lm), above).

We’ll proceed by assuming that the slopes do not differ between the levels of caste. We’ll follow two different
approaches to analyze these data.
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APPROACH 1 - estimate the main effects using emmeans

If we’re satisfied in the belief that the slopes are similar for the two caste levels, we can proceed by
characterizing the main effects. (Remember that we could not interpret these main effects if we had concluded
that lmMass and caste interacted to determine lnEnergy.)

The question that motivated the study was to determine whether the physiology differed between the two
putative caste types. Therefore, we’ll focus on addressing this question, using emmeans:
mr.emmeans.caste <- emmeans(mr.lm.t3, "caste")

## NOTE: Results may be misleading due to involvement in interactions
mr.emmeans.caste

## caste emmean SE df lower.CL upper.CL
## lazy 4.05 0.136 31 3.77 4.33
## worker 4.38 0.082 31 4.21 4.55
##
## Confidence level used: 0.95

These results indicate that the emmean (and SE) lnEnergy (having adjusted for effects of lnMass) tends to
be higher for worker mole rats (4.38 (0.082)) than for lazy mole rats (4.05 (0.136)). (Remember that these
values are for log-transformed data.)

Let’s compare these estimated, marginal mean (emmean) values using the pairs() function:
mr.pairs.caste <- pairs(mr.emmeans.caste)
mr.pairs.caste

## contrast estimate SE df t.ratio p.value
## lazy - worker -0.329 0.159 31 -2.068 0.0470

The effect size (and SE) of caste equals -0.329 (0.159). We also see that, unlike the output from Anova(),
above, the p-value (0.0470) indicates moderate, or ‘suggestive’ evidence for a difference in energy expenditure
between levels of caste.

We can calculate 95% CI’s for this effect size like this:
confint(mr.pairs.caste)

## contrast estimate SE df lower.CL upper.CL
## lazy - worker -0.329 0.159 31 -0.654 -0.00457
##
## Confidence level used: 0.95

APPROACH 2 - drop the interaction from the model

I’ll provide less commentary for this approach, but outline the code:
mr.lm.t3.main <- lm(lnEnergy~lnMass+caste,data=mr,

contrasts = list(caste = contr.sum))

library(car)
Anova(mr.lm.t3.main, type = 3)

## Anova Table (Type III tests)
##
## Response: lnEnergy
## Sum Sq Df F value Pr(>F)
## (Intercept) 0.00111 1 0.0126 0.9112
## lnMass 1.88152 1 21.3923 5.887e-05 ***
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## caste 0.63747 1 7.2478 0.0112 *
## Residuals 2.81450 32
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mr.emmeans.caste.main <- emmeans(mr.lm.t3.main, "caste")
mr.emmeans.caste.main

## caste emmean SE df lower.CL upper.CL
## lazy 3.96 0.101 32 3.75 4.16
## worker 4.35 0.077 32 4.19 4.51
##
## Confidence level used: 0.95
mr.pairs.caste.main <- pairs(mr.emmeans.caste.main)
mr.pairs.caste.main

## contrast estimate SE df t.ratio p.value
## lazy - worker -0.393 0.146 32 -2.692 0.0112

Once again, we find moderate or ‘suggestive’ evidence that energy levels differ between the worker and lazy
caste levels.
confint(mr.pairs.caste.main)

## contrast estimate SE df lower.CL upper.CL
## lazy - worker -0.393 0.146 32 -0.691 -0.0957
##
## Confidence level used: 0.95

On the log scale, the worker mole rats expend 0.393 more energy than lazy mole rats (for the population
and conditions exampled), once accounting for differences in body size; this difference plausibly ranges from
0.0957 to 0.691.

Question 5
As you might have guessed, Marland et al. (2020)’s approach to interpret their data is not appropriate. To
understand why, let’s consider their goal or hypothesis. They appear to be interested in making a statement
about the effect of BSA at time 24 relative to the effect of BSA at time 0. In other words, they wish to know
whether the effect of BSA depends on the context: time 0 vs. time 24. This perspective implicitly requires
that the authors test whether the size or nature of the difference between BSA and Control differs between
the two time periods; i.e., their hypothesis invokes an interaction between Treatment (BSA, Control) and
Time period (0, 24). If Marland et al. (2020) had analyzed their data with a 2-Factor GLM (or something
similar) they could have tested for such an interaction: if they found evidence for an interaction then they
would be justified in stating that the effect of BSA (vs. Control) differs between time periods. In contrast,
the analysis they used, involving 2 t-tests, does not involve an explicit test of the hypothesis that the effect
of BSA differs between the Time periods (the hypothesis of interest); therefore, their conclusions are not
appropriate. By using 2 t-tests, they only evaluated differences between BSA vs. Control at each Time,
separately, and did not explicitly tests whether the effect of BSA differed between times.

Note that Marland et al. (2020)‘s mistake occurs commonly: it is not correct to assume that a ’significant’
result in one context but not in another means that effects differ (in size, and generally) between the contexts.
If we wish to test for ‘context dependence’ of results, we require an analysis of an interaction.
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