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Question 1
Let’s import the data:
liz <- read.table("lizard.csv", header = TRUE, sep = ',')

Before we continue, let’s look at the data. First, we’ll examine the types of variables present:
str(liz)

## 'data.frame': 11 obs. of 2 variables:
## $ bite : num 4.3 4.6 4.3 5 5 5.2 5.3 5.4 4.8 4.7 ...
## $ territory.area: num 14 16 18.8 19.8 22.5 28 29.8 34.8 30.8 27.4 ...

We have two numeric (num) variables: bite and territory.area.

The dataset is not big, and looks like this:
liz

## bite territory.area
## 1 4.3 14.0
## 2 4.6 16.0
## 3 4.3 18.8
## 4 5.0 19.8
## 5 5.0 22.5
## 6 5.2 28.0
## 7 5.3 29.8
## 8 5.4 34.8
## 9 4.8 30.8
## 10 4.7 27.4
## 11 4.6 32.4

Only 11 data points. Be warned that small datasets can be more challenging to analyze than large datasets
(!) because it can be more difficult to assess the assumptions.

Let’s look again at the question asked us to do: “Lappin and Husak (2005) tested whether the force of an
individual’s bite predicted its territory size (e.g., do lizards with stronger bites have larger territories?).”
The word ‘predicted’ is important here for two reasons.

• First, the word predict implies causation, which is best addressed by regression. This is because
regression works in a way that assumes that the dependent variable depends on the independent variable.
If, instead, the authors had wanted to test for whether a change in one variable is associated with
a change in the other, they may have best analyzed their data with correlation (which we’re not
considering in this problem set.) (Note the distinction here: correlation only considers whether variables
are associated, but regression implies that one variable causally affects another variable.)
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• Second, the word predicted indicates which variable should be the dependent vs. independent vari-
able. If we’re interested in whether bite strength predicts territory.area, then this implies that
territory.area is the dependent variable (and will go to the left of the tilda (~) in our model).

Following this logic, let’s start by plotting the data:
plot(territory.area ~ bite, data = liz)
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What do we see? Well, to me, it looks like there may be a weak trend for territory.area to increase with
bite. There do not appear (yet) to be any major outliers (unusual data points) and it seems reasonable (so
far) to assume the relationship is a straight line.

With this in mind, let’s run a model of these data:
liz.lm <- lm(territory.area ~ bite, data = liz)

As always, let’s start by checking the assumptions:
plot(liz.lm)
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We’ll assume the authors who collected these data did so in a way that meets the assumptions of random
selection and independence (having looked at the original paper (https://doi.org/10.1086/432564), the
authors’ do well to meet the assumptions.). Let’s examine the residuals to test the remaining assumptions.

The second plot suggests the residuals are normally distributed. However, the first and third plots raise worries
about equal variance. In response, I tried transforming the data in various ways (various transformation of
the x-axis, y-axis or both), and also tried fitting a polynomial function (i.e., a curve; I not shown you how to

4

https://doi.org/10.1086/432564


do this yet), but none of these efforts improved the residuals much. (It turns out that the original authors
used correlation, not regression, to analyze these data. I disagree with their approach due to their goal to
‘predict’, but this does explain why they did not appear to encounter issues with residuals).

What do we do? Well, it is worth noting that residuals as poor as these can easily arise even when the data
do meet the assumptions, simply due to small sample size. The code at the end of this question simulates
data with similar qualities as the present data: the simulated data do meet the assumptions of the test,
but they often appear not to due to small sample size. This highlights the problems of working with small
datasets: it can be much harder to assess the assumptions. Does this mean that we can stop worrying about
whether the data meet the assumptions? No, not really - the residual plots are worrying with respect to equal
variance. But, we’re going to continue analyzing these data purely for the learning experience and remember
that if we were the authors of these data (and analyzed them with regression, not correlation) we’d warn our
readers of concerns over possibly violated assumptions and how this may increase the possibility of a Type 1
error.

Let’s examine the p-value. We can do this two ways. First, we’ll use anova() to obtain only a p-value of the
slope:
anova(liz.lm)

## Analysis of Variance Table
##
## Response: territory.area
## Df Sum Sq Mean Sq F value Pr(>F)
## bite 1 194.37 194.374 5.8012 0.03934 *
## Residuals 9 301.55 33.506
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-value equals 0.03934, providing ‘moderate’ or ‘suggestive’ evidence for a relationship between bite
and territory.area.

We can also obtain the -value for the slope from the summary output of our model:
summary(liz.lm)

##
## Call:
## lm(formula = territory.area ~ bite, data = liz)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.0472 -4.5101 -0.5504 3.6689 10.2237
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -31.539 23.513 -1.341 0.2127
## bite 11.677 4.848 2.409 0.0393 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.788 on 9 degrees of freedom
## Multiple R-squared: 0.3919, Adjusted R-squared: 0.3244
## F-statistic: 5.801 on 1 and 9 DF, p-value: 0.03934

Notice that we obtain the same p-value for bite. But we also obtain estimates of the slope (11.677; SE =
4.848) and y-intercept (-31.539; SE = 23.513).
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In a results section, we could report the moderate evidence for a relationship between bite and
territory.area (regression; F (1,9) = 5.801, p = 0.039), as well as the equation of the line (with SE’s)
provided in the paragraph, above. If course, we’d also warn our readers about possible increased probability
of Type 1 error due to possibly violated assumptions.

Below, please find some code to simulate data that do meet the assumptions of a regression and that closely
match the qualities of the data we just analyzed. If you run this code, yourself, several times you will likely
come across worrisome residual plots fairly easily, despite the fact that the generated data do meet the
assumptions of regression.

A short script to simulate data and residuals for lizards:

#Plot `bite` data to asses its' distribution:
hist(liz$bite)

Histogram of liz$bite
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#`bite` appears to be uniformly distributed: select random values
#from a uniform distribution with the same min and max as observed:
bite.x <- runif(11, min = min(liz$bite), max = max(liz$bite))
#NOTE: we get similar results if we assume 'bite' is normally
#disctributed: bite.x <- rnorm(11,mean(liz$bite), sd(liz$bite))

#Determine intercept, slope, and standard deviation of residuals
#from this output:
summary(liz.lm)

##
## Call:
## lm(formula = territory.area ~ bite, data = liz)
##
## Residuals:
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## Min 1Q Median 3Q Max
## -7.0472 -4.5101 -0.5504 3.6689 10.2237
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -31.539 23.513 -1.341 0.2127
## bite 11.677 4.848 2.409 0.0393 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.788 on 9 degrees of freedom
## Multiple R-squared: 0.3919, Adjusted R-squared: 0.3244
## F-statistic: 5.801 on 1 and 9 DF, p-value: 0.03934
#Simulate residual variance (11 observations), mean of 0 and sd
#equal to sd of residuals in model, `liz.lm` (see above):
y.res <- rnorm(11,0,5.788)
#Use `bite.x` values and observed equation of line in original
#data to calculate y-values (`territory.area`) without residual
#variation:
territory.area.y <- bite.x*11.677 -31.539
#Add residual variation to y-values (`territory.area`):
territory.area.y <- territory.area.y + y.res
#Model the data:
bite.sim.lm <- lm(territory.area.y ~ bite.x)
#Plot residuals
plot(bite.sim.lm)
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Question 2
Let’s start by importing the data and examining the data:
brains <- read.table("brains.csv", header = TRUE, sep = ',')

Now, let’s look at the data and also determine the types of variables involved:
brains

## lnMass lnBrain species
## 1 4.00 7.19 recent
## 2 3.96 7.23 recent
## 3 3.95 7.26 recent
## 4 4.04 7.23 recent
## 5 4.11 7.22 recent
## 6 4.10 7.24 recent
## 7 4.05 7.27 recent
## 8 4.03 7.26 recent
## 9 4.03 7.27 recent
## 10 4.05 7.35 recent
## 11 4.09 7.35 recent
## 12 4.12 7.35 recent
## 13 4.14 7.34 recent
## 14 4.17 7.33 recent
## 15 4.19 7.31 recent
## 16 4.21 7.27 recent
## 17 4.26 7.28 recent
## 18 4.28 7.32 recent
## 19 4.37 7.33 recent
## 20 4.27 7.33 recent
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## 21 4.21 7.33 recent
## 22 4.17 7.36 recent
## 23 4.21 7.38 recent
## 24 4.25 7.35 recent
## 25 4.26 7.37 recent
## 26 4.26 7.39 recent
## 27 4.23 7.42 recent
## 28 4.17 7.44 recent
## 29 4.39 7.54 recent
## 30 4.43 7.48 recent
## 31 4.15 7.15 neanderthal
## 32 4.21 7.17 neanderthal
## 33 4.27 7.21 neanderthal
## 34 4.23 7.35 neanderthal
## 35 4.25 7.47 neanderthal
## 36 4.35 7.40 neanderthal
## 37 4.39 7.38 neanderthal
## 38 4.43 7.35 neanderthal
## 39 4.44 7.43 neanderthal
str(brains)

## 'data.frame': 39 obs. of 3 variables:
## $ lnMass : num 4 3.96 3.95 4.04 4.11 4.1 4.05 4.03 4.03 4.05 ...
## $ lnBrain: num 7.19 7.23 7.26 7.23 7.22 7.24 7.27 7.26 7.27 7.35 ...
## $ species: chr "recent" "recent" "recent" "recent" ...

We see that most of the data come from recent humans, and only 9 data points come from neanderthal.
We also see three variables: lnMass (body size), lnBrain (brain size), and species. The two measures of
size have already been log-transformed (indicated by the ‘ln’ at the start of the names). We see that species
is currently type chr (character)m but we want it to be type Factor. Therefore, let’s concert it:
brains$species <- factor(brains$species)
str(brains)

## 'data.frame': 39 obs. of 3 variables:
## $ lnMass : num 4 3.96 3.95 4.04 4.11 4.1 4.05 4.03 4.03 4.05 ...
## $ lnBrain: num 7.19 7.23 7.26 7.23 7.22 7.24 7.27 7.26 7.27 7.35 ...
## $ species: Factor w/ 2 levels "neanderthal",..: 2 2 2 2 2 2 2 2 2 2 ...

Excellent! Now species is a Factor. Our variables are in the form we like.

Before continuing, let’s think about our goal for this analysis: we wan to “know whether, after accounting for
differences in body size, Neanderthals’ brains were of a different size than modern humans?”. This implies
several things. First, we’re foremost interested in whether brain size (lnBrain) differs between species; in
other words, we want to know whether species affects lnBrain, or, in other words (again), we want to know
whether lnBrain depends on species. Therefore, we know that lnBrain is the dependent variable. We’re
also told that we want to account for body size (lnMass) when making this comparison. Why would we do
this? Well, consider the humans around you: bigger people tend to have bigger heads, which may lead to
variation in brain size simply due to differences in body size. If recent humans and Neanderthals tended to
have different body sizes, then differences in bosy size would be an un-interesting reason for differences in
brain size. Therefore, we want to know whether, after having controlled for body size (lnMass), body size
differs between recent humans vs. Neanderthals. For this reason, we’ll include lnMass as an independent
variable in our model: this will allow us to ‘control’ for body size differences when we compare brain size
between recent humans and Neanderthals. In other words, a model like this can effectively allow us to
compare brain size of recent humans vs. Neanderthals for individuals of similar size.

Now that we understand our goal, let’s start by plotting the data:
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plot(lnBrain ~ lnMass, data = brains, col=ifelse(species=="recent", "red", "blue"))
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What do we see?

• As expected, we see that brain size tends to increase with body size.
• This relationship appears to be true for both recent humans (red) and Neanderthals (blue).
• Neanderthals tend to be larger than recent humans.
• The distributions of lnMass overlap nicely for recent humans and Neanderthals; this is important we

because we need this overlap to run the model we’ll use, below.

Do recent humans tend to have higher brain size (per unit body mass) than Neanderthals? That’s a bit hard
to tell from the plot. Let’s run our model. The model, below, includes an interaction between species and
lnMass: this allows the model to fit lines with different slopes for the two species.
brains.lm <- lm(lnBrain ~ species + lnMass + species:lnMass, data = brains, contrasts = list(species = contr.sum))

(Notice that we specified contrasts for the Factor, species. When analyzing models with both covariate(s)
and Factor, we need to calculate p-values as if we have unbalanced data (i.e., we’ll use the Anova() function,
below.))

Let’s examine the residuals:
plot(brains.lm)
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Unlike what we saw in Question 1, these residuals indicate the data nicely meet the assumptions: the first
and third plot indicate the data meet the assumptions of equal variance, and the second plot indicates the
data meet the assumption of normality (not perfectly, but certainly well enough to avoid worry).

Let’s check our p-values. We’ll use the Anova() function, which is found in the car library, to specify type 3
sums of squares:
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library(car)

## Loading required package: carData
Anova(brains.lm, type = 3)

## Anova Table (Type III tests)
##
## Response: lnBrain
## Sum Sq Df F value Pr(>F)
## (Intercept) 0.36840 1 83.1685 8.926e-11 ***
## species 0.00547 1 1.2358 0.2739
## lnMass 0.09810 1 22.1469 3.886e-05 ***
## species:lnMass 0.00485 1 1.0938 0.3028
## Residuals 0.15503 35
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As with any model that includes an interaction, we focus our attention in the interaction: how we proceed
depends on whether we have evidence for an interaction. If we find evidence for an interaction, we focus
on understanding the interaction; in the present example, we would determine the lines that describe the
relationship between lnMass and lnBrain for each level of species (recent and neanderthal). Note that
this approach would not directly answer our original question of whether lnBrain differed between species
(while accounting for lnMass). But, that’s OK because if we find evidence for an interaction between species
and lnMass then this will mean that there is no straight-forward answer to our original question because
the size of the difference in lnMass between species would depend on which value of lnMass we focus on;
therefore, providing equations for the line for each level of species will provide the most complete answer
that’s possible. On the other hand, if we do not find evidence for an interaction, we can focus instead on
interpreting the ‘main’ effects (species and lnMass) to answer our original question directly.

We see a high p-value for the interaction (p = 0.3028), providing little evidence for an interaction. Let’s
also plot the lines associated with each level of species. We can obtain the y-intercept and slope for each
species from the summary() output of our model. Recall, however, that we included the option, contrasts
= list(species = contr.sum), which will change the interpretation of the coefficients. Therefore, we need
to re-run our model without this option to obtain coefficients (i.e., values of y-intercepts and slopes) that we
can interpret appropriately:
brains.lm.2 <- lm(lnBrain ~ species + lnMass + species:lnMass, data = brains)

Now, let’s look at the summary() output:
summary(brains.lm.2)

##
## Call:
## lm(formula = lnBrain ~ species + lnMass + species:lnMass, data = brains)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.090341 -0.056928 -0.002495 0.034044 0.183930
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.2535 0.9769 4.354 0.000111 ***
## speciesrecent 1.1809 1.0623 1.112 0.273862
## lnMass 0.7135 0.2270 3.143 0.003395 **
## speciesrecent:lnMass -0.2595 0.2481 -1.046 0.302790
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.06655 on 35 degrees of freedom
## Multiple R-squared: 0.4653, Adjusted R-squared: 0.4195
## F-statistic: 10.15 on 3 and 35 DF, p-value: 5.908e-05

The first two rows correspond to values that we need to calculate the y-intercepts of each species. The
first row ((Intercept)) indicates the y-intercept for neanderthal (notice that neanderthal is not listed
in the output, but recent is). Therefore, the y-intercept of neanderthal equals 4.2535. The second row
(speciesrecent) indicates the difference between the y-intercept of neanderthal and that of recent, which
equals 1.1809. Therefore, the y-intercept of recent equals 4.2535 + 1.1809 = 5.4344

As you may guess, the latter two rows provide information about the slopes. lnMass indicates the
slope for neanderthal (0.7135), and speciesrecent:lnMass indicates the difference between the slopes of
neanderthal and recent (-0.2595). Therefore, the slope for recent equals 0.7135 - 0.2595 = 0.454.

With these values in mind, we can add lines to our plot, above, as follows:
plot(lnBrain ~ lnMass, data = brains, col=ifelse(species=="recent", "red", "blue"))
#add line for neanderthal:
abline(4.2535,0.7135, col = "blue")
#add line for recent:
abline(5.4344,0.454, col = "red")
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Note that slopes appear to be appreciably different (but this apparent difference might not be real; it might be
due to sampling error). Recall that the p-value for the interaction is high, however, providing no evidence for
‘real’ differences between these slopes. This situation will have arisen be due to large uncertainty (sampling
error) in the estimate of the difference between these slopes: basically we’re in a situation where we have no
statistical evidence for differences in slopes, but the raw estimates of the slopes are appreciably different. So,
what do we do? Given that our p-value for the interaction is so large, we’ll proceed with the assumption
that there is no interaction. But, we’ll proceed cautiously: we’ll proceed with an analysis that aims to
estimate the difference in mean value between the two species, and we’ll use two approaches. If
the two approaches give the same general answers then we can feel confident in our conclusions. The two
approaches include 1) keeping the interaction term in the model and 2) dropping the interaction term from
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the model. Whether to drop an interaction term from a model when we find little statistical
evidence for the interaction is a big question, and falls under the topic of ‘model selection’,
which we will address in the future. Note that, in our present example, we’re going to examine results
from both of these models for a specific purpose: to determine whether including the interaction
appreciably affects our estimate of differences between species. If we obtain similar answers from
the two approaches then we can feel confident in our conclusions, regardless of the possible effect of an
interaction.

Approach 1: Model with interaction

We’ll begin by estimating the difference in lnMass between levels of species for a model that includes the
interaction, species:lnMass.

This is the model we performed just above, where we saved the model output in the object, brains.lm.2
(similarly we could use the output in brains.lm). So let’s proceed by giving this object to emmeans to
estimate the effect of species. (Remember that we have to open the emmeans library, too.)
library(emmeans)
brains.emmeans <- emmeans(brains.lm.2,"species")

## NOTE: Results may be misleading due to involvement in interactions

Note that emmeans provides the warning, NOTE: Results may be misleading due to involvement in
interactions. This is worth noting! It is also the exact reason why we will be analyzing models with and
without the interaction in order to determine whether an interaction affects our conclusions.

Note that we may not be interested in knowing the average value of lnBrain for each species because it
appears that lnBrain depends on body size (lnMass); but, we can obtain such estimates of we wish (just
enter brains.emmeans).

Let’s focus on an estimate of the difference in lnBrain between levels of species, neanderthal and recent.
We can obtain this estimate with the pairs() function (found in the emmeans library):
pairs(brains.emmeans)

## contrast estimate SE df t.ratio p.value
## neanderthal - recent -0.0916 0.0348 35 -2.634 0.0125

This output provides several insights:

• It provides the estimate for the contrast, neanderthal - recent. This estimate equals, -0.0916
(with SE = 0.0348). The fact that this estimate is negative indicates that the mean lnBrain is larger
for recent than neanderthal (i.e., we subtracted a larger number from a smaller one). Therefore, this
result implies that, when accounting for body size (lnMass), brain size (lnBrain) is larger for recent
than neanderthal by 0.0916 (SE = 0.0348), remembering that these measurements are on the log-scale.

• Note that the p-value for this contrast is smaller than that from the output from, Anova(brains.lm,
type = 3), above. Now, the p-value equals 0.0125, providing moderate or ‘suggestive’ evidence for a
difference in lnBrain between recent and neanderthal (when accounting for lnMass). This is the
p-value we would report. (Note that the differences in p-values between the two sets of output arises
due to a phenomenon called, ‘variance inflation’, which we will likely discuss in the future.)

• We would report all of the output provided here (estimate, SE, df, t.ratio, p.value).

Finally, remember that we can obtain 95% Confidence Intervals for our results, above:
confint(pairs(brains.emmeans))

## contrast estimate SE df lower.CL upper.CL
## neanderthal - recent -0.0916 0.0348 35 -0.162 -0.021
##
## Confidence level used: 0.95
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These results indicate that the contrast, above, has 95% CI’s of -0.162 to -0.021. Therefore, when accounting
for lnMass, mean lnBrain of recent is plausibly greater than that of neanderthal by 0.021 to 0.162 (again,
remember that we’re on the log scale). We would report these results.

In a moment, we’ll compare these results to those from a model that does not include an interaction. Before
we do so, however, let’s examine the slopes for each level of species. We do so using the function emtrends
(in the emmeans library), like this:
brains.trends <- emtrends(brains.lm.2, "species", var = "lnMass")
brains.trends

## species lnMass.trend SE df lower.CL upper.CL
## neanderthal 0.714 0.227 35 0.253 1.174
## recent 0.454 0.100 35 0.251 0.657
##
## Confidence level used: 0.95

This code allows us to calculate the slope for the relationship between lnMass and lnBrain separately for
each level of species.

Note a few things from this output:

• The slopes for both neanderthal and recent are both positive, implying that lnBrain tends to increase
with lnMass in both species (we also find SE’s for these slope estimates).

• The output also provides 95% CI’s for each slope. Notice that the 95% CI’s do not include the value,
zero. This implies that ‘zero’ is not a very plausible slope. This, in turn, implies that we have p <
0.05 with respect to the slope for both levels of species.

Approach 2: Model without interaction

Now, we will repeat the process, above, but for a model in which we remove the interaction. As the overall
process is similar, we’ll just jump into the code ans look at the final output:
#Model without interaction:
brains.lm.noInteract <- lm(lnBrain ~ species + lnMass,

data = brains)
brains.noInt.emmeans <- emmeans(brains.lm.noInteract, "species")
pairs(brains.noInt.emmeans)

## contrast estimate SE df t.ratio p.value
## neanderthal - recent -0.0703 0.0282 36 -2.491 0.0175
confint(pairs(brains.noInt.emmeans))

## contrast estimate SE df lower.CL upper.CL
## neanderthal - recent -0.0703 0.0282 36 -0.128 -0.0131
##
## Confidence level used: 0.95

What do we notice when we compare this output to that from the model that included the interaction?

• emmeans did not provide the warning that we saw, above, related to including an interaction in the
model.

• the contrast estimate from the model without the interaction (-0.0703; SE = 0.0282) is fairly similar to
that from the model with the interaction included (-0.0916; SE = 0.0348). Therefore, the results are
fairly consistent so far.

• the p-values are also similar for this contrast: p = 0.0175 vs. p = 0.0125. Again, not much difference
between the models.

• the 95% CI’s for the contrast in the model without the interaction (-0.128 to -0.0131) are similar to
those from the model that included the interaction term, (-0.162 to -0.021).
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Overall, the conclusions are very similar. Which model you use to report your results is an open question:
however, when you do report your results, it would be wise to mention that you ran both model types and that
the results led to similar conclusions; you could (should?) even report the results from the alternative model
in Online Supplementary Materials if you are publishing your results. This leads to greater transparency.

2. keep interaction in - note that p-value for comparison between recent and Neanderthal can be different
from what we obtained above, in output from Anova() (p = 0.2739 for species effect).

A final note on the process we have taken: Note that, in practice, we should have a defined protocol
for how to model the data before we set out to analyze it, and we should stick to that protocol, regardless of
whether the outcome supports your favourite hypothesis or not. (Of course, our protocol may need to change
if unexpected circumstances arise, such as the data do not conform to the assumptions of our anticipated
model.) Why do I mention this? Because in these practice problem answers I’ve analyzed the results using
two models: I do not want to give the impression that it is wise to analyze the data multiple
ways and then select the result that you ‘prefer’. From another perspective, however, please note that
it is absolutely fine, and may be encouraged, to analyze the data multiple ways, especially if your goal
is to ensure that your conclusions are robust to different forms of analysis. Our analysis, here,
followed this spirit: We analyzed the same dataset in multiple ways to determine whether the approach to
the analysis affects our conclusions. Importantly, if we had found that our approaches had yielded different
conclusions, we absolutely should report the results and conclusions from both analysis approaches to ensure
transparency. i.e., we absolutely do not want to simply select the results that we ‘prefer’ and report those.

Question 3
Part (a)

This question uses a dataset already in R, the Puromycin dataset. Let’s obtain these data and look at them:
data(Puromycin)
str(Puromycin)

## 'data.frame': 23 obs. of 3 variables:
## $ conc : num 0.02 0.02 0.06 0.06 0.11 0.11 0.22 0.22 0.56 0.56 ...
## $ rate : num 76 47 97 107 123 139 159 152 191 201 ...
## $ state: Factor w/ 2 levels "treated","untreated": 1 1 1 1 1 1 1 1 1 1 ...
## - attr(*, "reference")= chr "A1.3, p. 269"

R’s help option describes this dataset as, “The Puromycin data frame has 23 rows and 3 columns of the
reaction velocity versus substrate concentration in an enzymatic reaction involving untreated cells or cells
treated with Puromycin.”

Based on this description, we infer that rate is the dependent variable; we want to know how conc (i.e.,
substrate ‘concentration’, a numeric variable) and state, a Factor with 2 levels, treated and untreated,
affect reaction rate.

Based on this background, we can address three questions with these data:

1. Does state affect reaction rate (‘rate“)?
2. Does substrate concentration (conc) affect reaction rate?
3. Does the way in which state affect rate depend on conc? i.e., do state and conc interact in their

effects on rate?

Before we proceed, let’s look at the whole dataset, just to get a sense of how much data we have:
Puromycin

## conc rate state
## 1 0.02 76 treated
## 2 0.02 47 treated
## 3 0.06 97 treated
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## 4 0.06 107 treated
## 5 0.11 123 treated
## 6 0.11 139 treated
## 7 0.22 159 treated
## 8 0.22 152 treated
## 9 0.56 191 treated
## 10 0.56 201 treated
## 11 1.10 207 treated
## 12 1.10 200 treated
## 13 0.02 67 untreated
## 14 0.02 51 untreated
## 15 0.06 84 untreated
## 16 0.06 86 untreated
## 17 0.11 98 untreated
## 18 0.11 115 untreated
## 19 0.22 131 untreated
## 20 0.22 124 untreated
## 21 0.56 144 untreated
## 22 0.56 158 untreated
## 23 1.10 160 untreated

Parts (b) and (c)

Let’s plot the data:
plot(rate ~ conc, data = Puromycin, col=ifelse(state=="treated", "red", "blue"))
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In this plot, we’ve made the treated data red, and untreated data blue.

These data are clearly not straight lines. Let’s try to straighten them by transforming the y- and/or x-axes:

Transform the y-axis only:
plot(log(rate) ~ conc, data = Puromycin, col=ifelse(state=="treated", "red", "blue"))
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Transform the x-axis only:
plot(rate ~ log(conc), data = Puromycin, col=ifelse(state=="treated", "red", "blue"))
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Transform both the y- and x-axis:
plot(log(rate) ~ log(conc), data = Puromycin, col=ifelse(state=="treated", "red", "blue"))
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To my eye, the data are most linear when we transform the x-axis only. Therefore, let’s model the data with
log-transformed values of conc. Note that this highlights that we can transform independent variables, as
well as dependent variables.

Let’s form our model:
pur.lm <- lm(rate ~ log(conc) + state + state:log(conc), data = Puromycin)

Now, let’s plot the residuals to check the assumptions. (As we know nothing about how these data were
collected, we’ll assume the data meet the assumptions of randomization and independence.)
plot(pur.lm)
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What do these plopts tell us?

• Plot 1: Notice the downward curvature in these points: the points almost have a rainbow shape. The
fact that these residuals do not form a nice ‘cloud’ (with no discernible shape) implies that we’ve not
managed to fit an appropriate line through the data. i.e., we’re attempting to fit a straight line through
(albeit transformed) data, and this approach does not adequately capture the shape of the trends in the
data. Perhaps this is not surprising: enzyme kinetics can lead to ‘saturating’ functions (i.e., they reach
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an asymptote), which made it harder to model data such as these with lm(). (Alternative analysis
methods could include, for example, non-linear regression, which we have not yet taught).

• Plot 2: the residuals are not too far off from a normal distribution (good!).
• Plot 3: The curvature in this plot suggests that the data violate the assumptions of equal (homogeneous)

variance.

Overall, these residual plots cause us to worry about our model. Perhaps lm() is not the appropriate approach
for these data, and we should use an alternative approach. This happens in data analysis, and we should
always bear such possibilities in mind. However, given that we’ve not learned any other approaches yet,
we’ll continue using lm(), but we’ll do so with full awareness that this approach brings serious
concern. We are only continuing our analysis using lm() in order to gain further practice.

Now, above, we forgot to include contrasts to allow us to calculate p-values using type 3 sum of squares.
Let’s re-formulate our model, and then obtain appropriate p-values:
pur.lm.con <- lm(rate ~ log(conc) + state + state:log(conc), data = Puromycin,

contrasts = list(state = contr.sum))
library(car)
Anova(pur.lm.con, type = 3)

## Anova Table (Type III tests)
##
## Response: rate
## Sum Sq Df F value Pr(>F)
## (Intercept) 252232 1 3011.731 < 2.2e-16 ***
## log(conc) 39881 1 476.194 6.491e-15 ***
## state 3592 1 42.891 2.854e-06 ***
## log(conc):state 996 1 11.892 0.002692 **
## Residuals 1591 19
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We find strong evidence (p = 0.002692) for an interaction between state and log(conc), implying that
the relationship between log(conc) and rate depends on whether we consider the treated or untreated
groups of state. (Remember to not take these results seriously, as we know our data violate the assumptions
of the model).

In this case, we may be most interested to know the slope for each relationship. (The intercept will be
biologically uninteresting, because we know that the reaction rate (rate) will equal zero when conc equals
zero, at least when we’ve fit an appropriate line to the data, which we have not managed to do.) We can
obtain the slopes, their SE’s and 95% CI’s using emtrends:
#Remember to open the emmeans library, which we did in Question 2...
emtrends(pur.lm.con, "state", var = "log(conc)")

## state log(conc).trend SE df lower.CL upper.CL
## treated 37.1 1.97 19 33.0 41.2
## untreated 27.0 2.18 19 22.4 31.5
##
## Confidence level used: 0.95

These are the results we’d report, along with the output from Anova(), above (along with plots of the data,
etc).
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