1-Factor GLM Homework Answers

Crispin Jordan

22/09/2021

Question 1 - Caffeine

The data for this question address the question of whether caffeine produced in nectar affects the amount of
nectar collected by pollinators.

Before we begin to analyze any dataset we much first determine whether the data meet the assumptions of
our expected analysis. So, what kind of analysis do we anticipate for the Caffeine dataset? The Caffeine
experiment has four treatments: 50a, 100a, 150a, and 200a, which specify the four levels of caffeine examined
in the experiment. The dataset also includes a series of measurements that were calculated as difference in
the amount of nectar consumed when a pollinator was offered a flower with caffeine (either 50, 100, 150 or 200
ppm (parts per million)) and the amount of nectar consumed from a ‘control’ flower, which had no caffeine.
Due to the fact that each measurement is a difference between two values (with a specified caffeine level vs. no
caffeine), we can analyse these data from two perspectives. From the first perspective, we can view each
measurement as a measure of preference (with vs. without caffeine) and aim to compare preference levels
between the four caffeine treatments. From this perspective, it would be natural to analyze these data
with a 1-factor general linear model. From a second perspective, we might be interested in whether the
average difference (i.e., the average datapoint) estimated for a given caffeine treatment differs
from zero. If it does, this indicates that pollinators tended to remove different quantities of
nectar from caffeinated vs. un-caffeinated flowers. We can address this perspective by obtaining 95%
CT’s for the mean value of each treatment, and determine whether zero (i.e., no difference) is a plausible
value. If the mean value (i.e., the mean difference between caffeine vs. no caffeine) for a given treatment is
close to zero (or if the 95% CI’s) include zero, we may conclude that we have little evidence that pollinators
can detect a difference between the flowers with vs. without caffeine for the given treatment.

We can use a 1-factor glm to address both perspectives. Before we proceed, however, we need to check
whether the data meet two important assumptions: random allocation to treatments and independence of
data within treatments. If the data do not meet these assumptions, we cannot analyze the data with 1-factor
glm. (Moreover, if subjects were not assigned randomly to treatments then we cannot analyze these data
with any method and expect to obtain trustworthy results).

¢« Randomization: Positions of caffeinated vs. uncaffeinated flowers were altered randomly. Subjects
(honeybees) experienced all treatments, so we needn’t worry about randomly allocating subjects to
treatment levels. We're satisfied that the data meet the assumption of randomization.

e Independence: In this experiment, the question of independence is a bit complicated. To save space
(and save you a lot of reading), I will simply say at this point that the data meet the assumption of
independence. Please continue reading if you’re interested in the details; if not, you can
skip the rest of this paragraph. The researchers created 5 ‘stations’ where honeybees could visit
the two flower types ((un)caffeinated flowers). Each station had both flower types, and all 5 stations
presented the same treatment level (e.g., 50a) at the same time on a given day. The researchers
presented a different treatment level on each day. Stations are independent from one another because
the bees only tended to visit a single station. (i.e., Data from each station results from a different
set of subjects - the authors explain that this is not 100% true because some bees visit more than one
station, and this is a failing with the experiment. We will ignore this only for teaching purposes).
Therefore, the data within treatment levels are independent, and this is what matters. The data among



treatment levels are not independent, because the bees at each station visited all treatment levels; but
this kind of non-independence does not interfere with a 1-factor glm. You can find the paper here:
https://link.springer.com/content/pdf/10.1007 /s10886-005-8394-z.pdf

Now let’s begin our analysis.
We beging by importing the data:

caf <- read.table('caffeine.csv", TRUE, oY)

We should always start our analysis by inspecting the dataset, even if we collected the data and created the
dataset file, ourselves. When we created the dataset, ourselves, we shoudl check the spreadsheet to inspect
for any obvious error; we also do this by plotting the data (which we will do shortly)! If we're analyzing data
that someone else collected, we need to familiarize ourselves with the dataset before we can begin.

Let’s start by simply examining the entire dataset. We do this by entering the name of the object that
contains the data:

caf

## ppmCaffeine consumptionDifferenceFromControl
## 1 50a -0.40
## 2 100a 0.01
## 3 150a 0.65
## 4 200a 0.24
## 5 50a 0.34
## 6 100a -0.39
#H T 150a 0.53
## 8 200a 0.44
## 9 50a 0.19
## 10 100a -0.08
## 11 150a 0.39
## 12 200a 0.13
## 13 50a 0.05
## 14 100a -0.09
## 15 150a -0.15
## 16 200a 1.03
## 17 50a -0.14
## 18 100a -0.31
## 19 150a 0.46
## 20 200a 0.05

The dataset has two columns, ppmCaffeine, which indicates which treatment a measurement came from, and
consumptionDifferenceFromControl, where we find the measurments of the difference in consumption in
flowers with caffeine vs. a control that lacked caffeine. We also see that the dataset is pretty small: we have
only 20 observations, total, for 4 treatments (5 measurements per treatment, on average). Small datasets like
this are more difficult to analyze for a few reasons. One reason, as we’ll see below, is that it becomes harder
to assess assumptions with small datasets. Other than a small sample size, no obvious problems jump out.

We would also like to know how R sees these data. What do I mean by this? I'll show you using the str()
function:

str(caf)
## 'data.frame': 20 obs. of 2 variables:
## $ ppmCaffeine : chr "50a" "100a" "150a" "200a"

## $ consumptionDifferenceFromControl: num -0.4 0.01 0.65 0.24 0.34 -0.39 0.53 0.44 0.19 -0.08 ...

This output reveals how R has classified the data in each column. We see that R currently treats the data in
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the column, consumptionDifferenceFromControl, as a number (num). This is good: this is what we want.
However, we see that R currently views the data in column, ppmCaffeine, as a character variable (see chr).
We want, instead, for these data to be a factor. Usually it is OK to run analyses of factors when the data
are classified as chr, but I have heard of occasions where this problems arise. Therefore, to be safe, we’ll
convert the data in the column, ppmCaffeine into a factor. We do this with the factor () function:

caf$ppmCaffeine <- factor(caf$ppmCaffeine)

Now, let’s check whether we have effectively converted the data in the first column into a factor:

str(caf)
## 'data.frame': 20 obs. of 2 variables:
## $ ppmCaffeine : Factor w/ 4 levels "100a","150a",..: 4 1 23412341 ...

## $ consumptionDifferenceFromControl: num -0.4 0.01 0.65 0.24 0.34 -0.39 0.53 0.44 0.19 -0.08 ...

Looks good! Out output now indicates that ppmCaffeine is a factor with four levels, which is exactly what
we expect.

Now that we’re familiar with the dataset and are convinced that the dataframe is set up as we require, we
can start our analysis.

We always begin our analysis by plotting the data.

In order to plot our data, we need to decide which column contains the dependent variable (which we plot on
the y-axis) and which column contains the independent variable (x-axis). Our hypothesis is that the amount of
caffeine will determine how much nectar a pollinator consumes. In other words, we expect that nectar consump-
tion depends on the caffeine treatment. Therefore, we conclude that consumptionDifferenceFromControl
is the dependent variable and ppmCaffeine is the independent variable. We place the independent variable
on the left of the tilda (~) in our function to plot the data (boxplot and stripchart), and we place the
independent variable to the right of the ~. Therefore, our plotting functions look like this:

boxplot (consumptionDifferenceFromControl ~ ppmCaffeine, caf)
stripchart (consumptionDifferenceFromControl ~ ppmCaffeine, caf, TRUE,
TRUE, 21, "maroon", "bisque")
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What do we see? Well, the fist thing to notice is that, as expected, the small sample size makes it difficult to



anticipate any problems with assumptions. Let’s look at the figure in detail:

e Outliers? Plotting our data can help us spot unusual datapoints, or so-called, ‘outliers’ Outliers
could represent true, real measurements that happend to be unusual, our outliers can represent errors
when typeing the data into a spreadsheet. The latter case is obvious when we find values that are truly
impossible; for example, if we measured a subject’s mass and recorded it as negative (this violates
physics). In our case, we see slightly unusual measurements in the two middle treatments (150a has an
unusually low measurement, and 200a has an unusually high measurement). But, with so few data it is
difficult to discern whether these are truly ‘unusual’. So, we’ll proceed, assuming that there are not
obvious outlies, but we’ll grumble to ourselves abotu low sample sizes.

o Normality? We can examine the shape of the boxplots (and individual values) to get a preliminary
sense of whether the data are likely to meet the assumption of normality. To my eye, the boxplots all
look fairly symmetrical, which is consistent with normality. But again, it is hard to tell with so few
data. Please note that, even when we assess boxplots to check ‘normality’; we must still formally inspect
the residual plots for a better assessment of normality. We inspect the boxplots simply to set our
expectations for what we’ll find later in our analysis. This is useful because, if we find that our
conclusions later in the analysis do not match our expectations from inspecting a plot of
the data, this can signal that we’ve made a mistake. In this case, we should check our
work. Often, when discrepancies occur between expectations and what we actually find,
this occurs due to forming poor expectations (this is easy to do). But it is still wise to
check.

o Equal variance? Again, small sample size complicates this assessment. To my eye, I woudl guess that
variance is likely equal. But we face the same problems as we did when assessing outliers.

o Expected differences between treatments? It is always useful to use the plot to guess the size
of expected differences between treatments; we can compare our guesses to the model output. Again,
we do this as a check of whether we’ve made any big errors during our analysis. Let’s compare each
treatment against the first treatment on the plot, 100a.

— DIl guess that the mean of 100a equals (approximately) -0.15.

— If the mean of 150a is about positive 0.3 (guessing again), then we expect that the difference
between 100a and 150a equals about 0.45.

— Guessing again, I think the mean of 200a equals 0.40. Therefore I anticipate a difference between

100a and 200a of 0.55.

Finally, the mean of 50a looks close to 0.1. Therefore I anticipate a difference of 0.25 between

100a and 50a.

With these expectations in mind, let’s proceed with our analysis. We need to formulate our model. To do
so, we place the dependent variable (consumptionDifferenceFromControl) to the left of the tilda, and the
independent variable (ppmCaffeine) on the right (exactly as we did when plotting the data). We use the
1m() function for our 1-factor glm. Our model looks like this:

caf.1lm <- 1lm(consumptionDifferenceFromControl ~ ppmCaffeine, caf)

After running the model, we always check our assumptions next. We do this as follows:

plot(caf.lm)
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How do we interpret this output? Let’s consider the four plots:

o Plot 1: This plot provides one way to assess the assumption of equal variance. Ideally (when variance
is equal), we would not see any pattern in the points, they would be evenly distributed above and
below the dotted line, and the red line would be straight. To my eye, it looks like the points on the
left side of the plot are closer together (vertically), and the points become more spread out (vertically)
as we proceed to the right of the plot. This would suggest a problem with variance. However, this



trend is slight, and it is difficult to confidently claim that this trend exists due to the low sample size.
We also see that the red line is mostly straight, except at the far right. Overall, this plot provides
ambiguous evidence for equal variance, as we anticipated from the boxplots. There’s just not enough
data to confidently check this assumption.

Plot 2: This qq plot allows us to check the assumption of normally distributed residuals. In our case,
the data fall nicely along the dotted line, overall. This indicates that the data meet the assumption of
normality. Recall that this was difficult to anticipate when we examined the data in the boxplots. The
qq plot provides a much more reliable assessment of this assumption.

Plot 3: Like plot 1, plot 3 allows us to check the assumption of equal variance. In this case, the data
meet the assumption of equal variance when the red line is flat and horizontal, the points lie above and
below the red line equally. In our case, the red line is certainly not perfectly flat due to the sudden
upwards shift at the right. However, this amount of “wobble” in the red line is perfectly expected with
such a small sample size. Therefore, this plot provides no evidence that the variances differ between
treatment levels. Good!

Plot 4: We will ignore this plot.

OK. We've now checked our assumptions and we’re happy that they are all met, we will carry on.

Our next step is to examine a summary of the output. This summary indicates differences between some of
the treatment combinations. We obtain the summary with:

summary (caf .1lm)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
Im(formula = consumptionDifferenceFromControl ~ ppmCaffeine,
data = caf)
Residuals:
Min 1Q Median 3Q Max
-0.5260 -0.1655 0.0520 0.1610 0.6520
Coefficients:
Estimate Std. Error t value Pr(>lt|)
(Intercept) -0.1720 0.1345 -1.278 0.2193

ppmCaffeinel50a  0.5480 0.1903 2.880 0.0109 =*
ppmCaffeine200a  0.5500 0.1903 2.891 0.0106 *
ppmCaffeineb0a 0.1800 0.1903 0.946 0.3582

Signif. codes: O '*¥x' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3008 on 16 degrees of freedom

Multiple R-squared: 0.4393, Adjusted R-squared: 0.3341

F

-statistic: 4.178 on 3 and 16 DF, p-value: 0.02308

That’s a lot of output. Let’s focus on the part called, Coefficients:. Notice that we have four rows of
information: (Intercept), ppmCaffeinel50a, ppmCaffeine200a and ppmCaffeineb50a. The only treatment
not listed is ppmCaffeine100a; therefore, (Intercept) provides information about ppmCaffeine100a. (No-
tice that treatment, therefore, are listed in that same order as in our boxplot; alphanumerically.) Let’s not
interpret each row:

(Intercept): This row provides the mean value for treatment ppmCaffeine100a, provided under
Estimate. This value (-0.1720) closely matches our guess of -0.15, which is reassuring. The column
Std. Error provides the standard error for this estimate of the mean of level, ppmCaffeine100a. The
values in columns t value and Pr(>|t|) provide statistics for a test of whether the Estimate (-0.1720)
differs from zero. The p-value is large (0.2193) indicating that we have no evidence that the Estimate
differs from zero. We will return to this when we use the emmeans function, below.



e ppmCaffeinel50a: This row provides information about the estimated difference between the mean of
the Intercept (i.e., the mean of treatment ppmCaffeine100a) and the mean of level, ppmCaffeine150a.
The Estimate indicated that this difference equals 0.5480. Recall that when we examined the boxplot,
we predicted a difference of 0.45 for these two treatments. Our guess was not too bad, which is
reassuring (again). The column, Std. Error, nor provides the standard error for the difference between
(Intercept) and the mean of ppmCaffeinel150a. Likewise, columns t value and Pr(>|t|) provide
statistics for the comparison of these two means. The p-value (0.0109) indicates that we have moderate
or suggestive evidence of differences between these two means (see below for more explanation).

o ppmCaffeine200a: Following the logic from above, this row provides information about the comparison
between the (Intercept) and the mean of level, ppmCaffeine200a, which equals 0.5500. Again, this
matches our guess of 0.55, exactly. (Not bad!)

e ppmCaffeinebOa: Finally, we guessed a difference between (Intercept) and ppmCaffeine50a of 0.25.
It is reassuring that the Estimate of this difference provided in this row equals 0.1800, which is not a
great difference.

Overall, our predictions match the output fairly well, especially given that our guesses were admittedly poor
due to the small amount of data. This is reassuring, and we can confidently continue our analysis.

We will now obtain an ANOVA table to determine the statistics for our overall test of differences among
groups. We do so like this:

anova(caf.1lm)

## Analysis of Variance Table

##
## Response: consumptionDifferenceFromControl
#i# Df Sum Sq Mean Sq F value Pr(>F)

## ppmCaffeine 3 1.1344 0.37814 4.1779 0.02308 *

## Residuals 16 1.4482 0.09051

##H -

## Signif. codes: O '**x' 0.001 'x*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Three values interest us:

e Df (which equal 3 and 16; we report them both);*
e F value, which equals 4.1779; we will report this value;
e Pr(>F), which is our p-value, equaling 0.02308. How should we interpret this p-value?

How do we interpret the p-value?

e It used to be convention that p-values less than 0.05 were considered ‘significant’ effects and those
above 0.05 were ‘non-significant’. In 2019, the American Statistical Association (ASA) decided that this
practice led to too many poor conclusions and that the concept of ‘statistical significance’ should be
abolished. See here: https://www.tandfonline.com/doi/full/10.1080/00031305.2019.1583913

e The ASA suggests p-values be interpreted along a ‘sliding scale’, where small p-values constitute ‘strong
evidence for an effect and large p-values provide ‘weak’ evidence for an effect. But how small should a
p-value be to provide ‘strong’ evidence?

o Benjamin et al. (2018; DOI: 10.1038/s41562-017-0189-z) argue that p-values near 0.005 and smaller
constitute “substantial” or “strong” evidence for an effect. Publications that adopt this perspective
(e.g., https://ecoevorxiv.org/ndghz/) may suggest that p-values between 0.005 and 0.05 are ‘suggestive’
of effects; similarly, I sometimes say that p-values near 0.05 provide ‘moderate’ evidence for an effect.
We will adopt this perspective when interpreting p-values.

e The ASA also cautions against over-relying on p-values to interpret results; they suggest using other
sources of evidence, e.g., effect sizes (which we use, below).

)

The p-value equals 0.02308, which is not strong evidence for an effect; it provides ‘moderate’ or ‘suggestive’
evidence for an effect. With this in mind, we will now conduct post-hoc tests to examine evidence for
differences between treatments; more important, we will estimate effect sizes.
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We will use functions in the emmeans library for our post-hoc tests. Open the library like this (or install it
first, using the install.packages() function if you do not have it):

library(emmeans)

We examine our effect sizes and post-hoc tests in two steps in emmeans. First, we calculate the mean values
for each treatment. We do this as follows:

caf .emmeans <- emmeans(caf.lm, "ppmCaffeine")

We used the emmeans functions to calculate means for each level of ppmCaffeine. We first provided the name
of the object that contained out model output (caf.lm), and then we specified the independent variable
for which we wished to obtain estimates (ppmCaffeine). We stored the output of this work in the object,
caf .emmeans. Let’s examine these results now:

caf .emmeans

## ppmCaffeine emmean SE df lower.CL upper.CL

## 100a -0.172 0.135 16 -0.4572 0.113
## 150a 0.376 0.135 16  0.0908 0.661
## 200a 0.378 0.135 16  0.0928 0.663
## 50a 0.008 0.135 16 -0.2772 0.293
##

## Confidence level used: 0.95

Let’s examine this output: - The first column, emmean, provides the ‘estimated marginal mean’ for each group;
we will report this mean for each group - SE provides the standard error for each estimated mean value;
again, we will report this mean for each group - df indicated the degrees of freedom used to calculate
the SE; we do not need to report this value, specifically, because we will already report this value when we
report the F value. - lower.CL and upper.CL: These provide the upper and lower 95% confidence limits for
each estimated mean; It is optional to report these values, but they are often very useful.

We will report many of these values when we describe our results. In this particular experiment,
however, the 95% CI’s for the mean of each group provide an extra degree of insight into the data. This
is because, as you will recall, each measurement equals the difference between nectar consumed for flowers
with caffeine vs. nectar consumed in flowers lacking caffeine: therefore, the 95% CI’s for the mean of each
treatment level allow us to evaluate evidence whether these differences are likely different from zero (i.e.,
whether pollinators have different preferences between caffeinated flowers vs. non-caffeinated flowers for a
given treatment level). Due to this special use of 95% CIs in this particular experiment, we’ll now take a
moment to interpret them more closely.

Let’s begin with treatment 100a. Here, the 95% CI’s range from -0.4572 to 0.113. Importantly, these 95%
CI’s span the value zero; this implies that ‘zero’ is a plausible difference between nectar consumed from
caffeinated vs. non-caffeinated flowers in the 100a treatment. In other words, we have no evidence that
pollinators had a preference for one of the two flower types in this treatment. This situation might arise
for a variety of reasons: one possible reason could be that pollinators could not perceive caffeine at this low
concentration (100 ppm). We would need further experiments to determine whether this was true.

We come to a similar conclusion when examining the 95% CI’s for the treatment, 50a. However, the 95%
CI’s do not include zero for treatments 150a and 200a; therefore, we have evidence that pollinators extracted
more nectar from one of the flower types than the other (caffeinated vs. non-caffeinated) when the caffeine
concentration equaled 150ppm or 200ppm. These results can help us interpret the outcome of the experiment.

Now that we have obtained mean values for each treatment level and interpreted them, we will make
comparisons among the treatment levels and estimate effect sizes. We do so using the pairs() function:

caf .pairs <- pairs(caf.emmeans)
caf .pairs

## contrast estimate SE df t.ratio p.value



## 100a - 150a -0.548 0.19 16 -2.880 0.0482
## 100a - 200a -0.550 0.19 16 -2.891 0.0472
## 100a - 50a -0.180 0.19 16 -0.946 0.7809
## 150a - 200a -0.002 0.19 16 -0.011 1.0000
## 150a - 50a 0.368 0.19 16 1.934 0.2534
## 200a - 50a 0.370 0.19 16 1.945 0.2494
#

## P value adjustment: tukey method for comparing a family of 4 estimates

Each row of the output provides information about a different comparison between groups, specified by the
column heading, contrast. For example, the first row provides information about the comparison between
levels 100a and 150a, indicated by 100a - 150a. This terminology, 100a - 150a should be interpreted
literally: this row provides results that come from subtracting the mean of level 150a from that of 100a. The
column, estimate, provides the differences between the means. In the first row, the estimate is negative,
because the mean of 150a is larger than the mean of 100a (and we get a negative number when we subtract
a larger number from a smaller number). We will report these differences in estimate, which are
the effect sizes. We will also report the values in SE, which are the standard errors of the estimated
differences. df provides the degrees of freedom for this comparison between means, and t.ratio and p.value
provide test statistics for the comparisons between these means. In this example, all of the p-values are large;
the smallest p-values are near 0.05 (e.g., 0.0472) which only provide ‘moderate’ or ‘suggestive’ evidence of an
effect. Therefore, we never have strong evidence for differences between any of the treatment levels. NOTE
that these p-values were adjusted via the Tukey method to account for multiple conparisons
(i.e., the p-values come from a Tukey test).

What can the effect sizes tell us? Personally, without knowing more about how pollinators respond to
chemicals like caffeine I find it difficult to interpret these results. From a naive perspective, we might expect
that pollinators’ responses to the treatments would increase or decrease systematically with the caffeine
concentration. However, that’s not what we see. Based on the means alone (i.e., ignoring uncertainty given
by SE’s), the lowest mean value occurred with 100a; the next highest mean was for 50a, and then there was
virtually no difference between the levels 150a and 200a. So, the ‘story’ told by these data is not as simple
as ‘mean values increase with the caffeine concentration’ Of course, we cannot ignore uncertainty in these
estimates: for example, even though the mean of 100a appears smaller than that for 50a, the 95% CI’s for
this contrast suggests that the difference between these treatments may range from -0.946 (i.e., the mean of
50a is greater than that of 100a by 0.946) to 0.7809 (i.e., the mean of 100a exceeds that is 50a by 0.78). We
notice that these 95% CI’s include zero, indicating that we have little evidence that the mean values of 50a
and 100a differ.

Overall, the effect sizes provide few easy insights into the pollinators’ behaviour. We can explain this when
we report the results.

Finally, we would like obtain 95% CI’s for the effect sizes. We do so with:

confint (caf.pairs)

## contrast estimate SE df lower.CL upper.CL
## 100a - 150a -0.548 0.19 16 -1.092 -0.00362
## 100a - 200a -0.550 0.19 16 -1.094 -0.00562
## 100a - 50a -0.180 0.19 16 -0.724 0.36438
## 150a - 200a -0.002 0.19 16 -0.546 0.54238
## 150a - 50a 0.368 0.19 16 -0.176 0.91238
## 200a - 50a 0.370 0.19 16 -0.174 0.91438
##

## Confidence level used: 0.95
## Conf-level adjustment: tukey method for comparing a family of 4 estimates

Now we have everything we need to report our results. We might report them as follows.

(Discuss assumptions) We analyzed the effect of caffeine concentration on the difference in nectar consumed
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in caffeinated vs. non-caffeinated flowers for four levels of caffeine (50, 100, 150 and 200ppm) using a 1-factor
GLM. The data met the assumptions of random allocation of subjects to treatments and independence,
reflected in the experimental design. The model residuals indicated that the data met the assumptions of
normally distributed residuals and equal variance.

(Provide overall test result.) Our analysis revealed moderate evidence that caffeine concentration affected
nectar consumption (1-factor GLM, F(3,16) = 4.1779, p = 0.02308).

(Here, I describe the means of each treatment.) Estimated treatment means provide little evidence that
pollinators removed different amounts of nectar from caffeinated vs. non-caffeinated flowers when caffeine
concentrations were low (50a and 100a) (Figure 1 (always plot of your data, as we did at the top of this
document.)). The mean difference between nectar removal from caffeinated vs. non-caffeinated flowers equaled
(mean +/- SE) 0.008 +/- 0.135; (95% CI’s: -0.2772 to 0.293) and -0.172 +/- 0.135 (-0.4572 to 0.113) for
levels, 50a and 100a, respectively. The 95% CI’s provide little evidence that pollinators removed different
quantities fo nectar from caffeinated vs. non-caffeinated flowers for these two treatment levels. On the other
hand, 95% CI’s provide suggest that pollinators removed different quantities of nectar from caffeinated
vs. non-caffeinated flowers for levels 150a and 200a. Their means (+/- SE) are, respectively, 0.376 +/- 0.135
(0.0908 to 0.661) and 0.378 +/- 0.135 (0.0928 to 0.663).

(Discuss differences between factor levels) Given that we have many comparisons to report, I would
provide these results in a table. The table would include columns that indicate: i) the contrast
being made (i.e., which levels are compared); ii) the estimate of that contrast; iii) the SE for
this estimate; iv) the df; v) the t.ratio, vi) the p.value, and the 95% CI’s for the estimated
differences. These results are all found in the output of pairs() and confint(). The table
should clearly state that the p-values and 95% CI’s are adjusted for multiple comparisons via
the Tukey method. We can call this Table, Table 1. The mean values of each treatment level do not
tend to increase with the concentration of caffeine (although we did not explicitly test for this tend). For
example, the mean of 100a tends to be lower than that for 50a, but post-hoc Tukey comparisons provide little
evidence that their means differ (Table 1). Therefore, little evidence suggests that the extent of the difference
in nectar collection from caffeinated vs. un-caffeinated flowers differs between 50a and 100a levels. Similarly,
we find little evidence that the mean of 150a differs from that of level 200a (Table 1). Only comparisons
between level 100a vs. 150a or 200a provide even moderate evidence for pairwise differences (Table 1).

Please note:

e We did not discuss the magnitude of the effects. The reason is simple: in this case, I do not know how
to biologically interpret the magnitude of differences of differences.

It is important to note whether the p-values and 95% CI’s for post-hoc comparisons are adjusted for
mutiple comparisons (and if so, how (e.g., Tukey method)).

o Not all researcher agree that analyses should correct for multiple comparisons. The reasons for this are
beyond the scope of this exercise. If you decide to conduct post-hoc comparisons and measure effect
sizes without correcting for multiple comparisons you can do so by adding adjust = "none" to the
pairs() function: e.g., caf.pairs.noAdjust <- pairs(caf.emmeans, adjust = "none")

Question 2 - Aphids

Much of the explanation provided for answer of Question 1 will apply to Question 2. Therefore,
we provide less commentary for Question 2.

As in Question 1, we must always consider whether the data are appropriate for a given analysis. This
experiment involves three levels of one factor and we aim to compare the mean values among the three levels.
Therefore, it would be natural to analyze these data with a 1-factor GLM. Do the data meet the assumptions
of randomization and independence?

« Randomization: As far as I can tell, the original paper (and supplementary online materials) do not
provide details to know whether the data meet the assumption of randomization. Disappointing.

e Independence: As for randomization, I could not find information to assess the assumption of
independence. Disappointing.
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OK. We d not know whether these assumptions are met. If we had been reviewers for this paper we would
have demanded these details. We will continue with our analysis, even though we’re deeply disappointed.

(Sigh.)
Let’s import the data:
aphid <- read.table("aphid.csv", TRUE, D

Let’s examine the data:

aphid

## infectionStatus color
## 1 original 30.7
## 2 original 25.4
## 3 original 26.2
# 4 original 23.0
## 5 original 20.9
## 6 original 20.7
## 7 original 15.8
## 8 original 17.4
## 9 original 17.6
## 10 original 17.0
## 11 original 16.5
## 12 original 15.3
## 13 uninfected 25.2
## 14 uninfected 22.3
## 15 uninfected 18.5
## 16 uninfected 15.4
## 17 uninfected 15.3
## 18 uninfected 17.0
## 19 uninfected 16.6
## 20 uninfected 18.6
## 21 uninfected 19.0
## 22 infected 43.3
## 23 infected 42.3
## 24 infected 40.7
## 25 infected 41.2
## 26 infected 39.6
## 27 infected 39.5
## 28 infected 36.2
## 29 infected 36.2
## 30 infected 34.4
## 31 infected 30.7
## 32 infected 31.9

We see two columns: infectionStatus and color. infectionStatus indicates which of the three treatments
a measure of color belongs to: original, uninfected or infected. We have about 10 observations for
each level, which is an better than we had for Question 1. (Although, at least for Question 1 we knew the
data were independent, but we do not know this for Question 2. Sigh (again).)

Let’s examine the columns in more detail:

str(aphid)

## 'data.frame': 32 obs. of 2 variables:

## $ infectionStatus: chr '"original" "original" "original" "original"

## $ color :num 30.7 25.4 26.2 23 20.9 20.7 15.8 17.4 17.6 17 ..
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Currently, the column infectionStatus is a ‘character’ type variable. Let’s change it to a factor:

aphid$infectionStatus <- factor(aphid$infectionStatus)

Let’s check that our code worked:

str(aphid)

## 'data.frame': 32 obs. of 2 variables:

## $ infectionStatus: Factor w/ 3 levels "infected","original",..: 2222222222 ...
## $ color : num 30.7 25.4 26.2 23 20.9 20.7 15.8 17.4 17.6 17 ...

Yes! infectionStatus is now a factor.
Now that we’re happy with the dataset, let’s plot the data.

We hypothesize that infectionStatus affects color; i.e., we hypothesize that color depends on
infectionStatus. Therefore, color is the dependent variable and we will place it on the left of the tilda (~)
both when we plot the data and when we run our linrar model (1Im()). Similarly, infectionStatus is the
independent variable and we will place it to the right of the tilda in these functions.

Plot the data:

boxplot(color ~ infectionStatus, aphid)
stripchart(color ~ infectionStatus, aphid, TRUE, TRUE, "jitter"
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What do we see?

e Outliers? No obvious unusual datapoints. Nice.

e Normality? Boxplots are roughly symmetrical; we expect the data to meet the assumption of normality
(we still need to check this by plotting the residuals.)

e Equal variance? The data are similarly ‘spread out’ for levels infected and original, but seem to
be slightly closer together for uninfected. It is possible that the data might violate the assumption of
equal variance.

o Estimated differences? The mean value of infected appears to be about 37. The mean of original
appears to be about 20; therefore we expect the difference between the mean of infected and original
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to be 20 - 37 = -17. Similarly, the mean of uninfected appears to be about 18, so we expect the
difference between uninfected and infected to equal 18 - 37 = -19.

With these predictions in mind, let’s run our model. We decided, above that color is the dependent variable.
Therefore, our model looks like this:

aphid.lm <- 1lm(color ~ infectionStatus, aphid)

We always plot the data to test the assumptions of equal variance an normality before we look at the results:

plot(aphid.lm)
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Standardized residuals
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Residuals vs Leverage
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We see:

e Plot 1: No strong pattern in the residuals; suggests data meet assumption of equal variance.

e Plot 2: Points generally fall along the line: suggests that the data meet the assumption of normally
distributed residuals.

e Plot 3: The red line is not as flat as we’d like, but it is not too bad. Moreover, if there was a problem
with equal variance, it would arise due to one level (uninfected) having unusually small variance. It
turns out that having a single level with unusually small variance has less severe impact on conclusions
than other possible situations (e.g., if one level had unusually high variance). Given that the plot looks
alright, and given the pattern of variance, we’ll say we’re happy that the data meet the assumptions of
equal variance.

e Plot 4: Skip this plot.

We’re happy the data meet the assumptions. Let’s look at the model estimates to see whether they match
our expectations:

summary (aphid.1lm)

##

## Call:

## 1m(formula = color ~ infectionStatus, data = aphid)

#it

## Residuals:

## Min 1Q Median 3Q Max

## -7.1182 -3.2806 -0.1056 3.0068 10.1583

#i#

## Coefficients:

#t Estimate Std. Error t value Pr(>ltl)

## (Intercept) 37.818 1.284 29.453 < 2e-16 **x
## infectionStatusoriginal -17.277 1.778 -9.719 1.26e-10 **x*
## infectionStatusuninfected -19.163 1.914 -10.011 6.43e-11 *x**
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##

## Signif. codes: O '**x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.259 on 29 degrees of freedom

##
##

Multiple R-squared: 0.819, Adjusted R-squared: 0.8065
F-statistic: 65.59 on 2 and 29 DF, p-value: 1.728e-11

Here, the (Intercept) represents the mean value of the level, infected; the two rows beneath provide the
difference between the mean of infected and the means of original (second row) and uninfected (third
row). Notice that the values in the column, Estimate match our predictions from the boxplots very well.
This provides confidence in our analysis. Nice!

Now, let’s obtain our test statistics:

anova(aphid.lm)

## Analysis of Variance Table
##
## Response: color

#it Df Sum Sq Mean Sq F value Pr(>F)

## infectionStatus 2 2379.27 1189.64 65.595 1.728e-11 **x

## Residuals 29 525.95 18.14

##H ——-

## Signif. codes: O 's*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

We note these values: Df = 2, 29; F value = 65.595; Pr (>F) = 1.728e-11. We will report these values
later. The p-value is extremely small, indicateding that we have strong evidence that mean color differens
among levels of infectionStatus.

We now want to examine comparisons between the treatment levels and examine effect sizes:

library (emmeans)

We begin by calculating the mean values of each level:

aphid.emmeans <- emmeans(aphid.lm, "infectionStatus")
aphid.emmeans

## infectionStatus emmean SE df lower.CL upper.CL
## infected 37.8 1.28 29 35.2 40.4
## original 20.5 1.23 29 18.0 23.1
## uninfected 18.7 1.42 29 15.8 21.6
##

## Confidence level used: 0.95

We will report everything is the output above; note however that the degrees of freedom is the same as we
obtained for the F value (the denominator degrees of freedom, 29), and we want to avoid presenting the
degrees of freedom twice.

Notice that the mean values of original and uninfected are very similar and their 95% CI’s overlap greatly
(suggesting little evidence for a difference between them). On the other hand, the 95% CI’s of infected do
not overlap with the 95% CI’s of the other two levels. This will be reflected in the pairwise comparisons:

aphid.pairs <- pairs(aphid.emmeans)
aphid.pairs

## contrast estimate SE df t.ratio p.value
## infected - original 17.28 1.78 29 9.719 <.0001
## infected - uninfected 19.16 1.91 29 10.011 <.0001
## original - uninfected 1.89 1.88 29 1.004 0.5801
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#i#
## P value adjustment: tukey method for comparing a family of 3 estimates

Again, we will report all of the output, above (being careful to not repeat our reporting of the degrees of
freedom). Notice that the p-values provide strong evidence that mean color of infected individuals differs
from that of original and uninfected individuals, but little evidence that mean color differs between
original and uninfected individuals.

Now we obtain 95% CIT’s for these effect sizes (i.e., differences between levels):

confint (aphid.pairs)

## contrast estimate SE df lower.CL upper.CL
## infected - original 17.28 1.78 29 12.89 21.67
## infected - uninfected 19.16 1.91 29 14.44 23.89
## original - uninfected 1.89 1.88 29 -2.75 6.52
##

## Confidence level used: 0.95
## Conf-level adjustment: tukey method for comparing a family of 3 estimates

We will report the 95% CT’s from this output (the remaining output is identical to the output from pairs()).
Now we must report our results.

We analyzed the effect of infectionStatus on hue angle (color) with a 1-factor GLM; low hue angles
correspond to red, and larger angles correspond to green. It is unclear whether the data meet the assumptions
of (1) random allocation of treatments and (2) independence were met because the published article appeared
to lack these details. Plots of the model residuals indicate that the data meet the assumptions of equal
variance and normally distributed residuals.

Our analysis revealed strong evidence that mean color differs among levels of infectionStatus (1-factor
GLM; F(2,29) = 65.595; p = 1.728e-11).

(We would include a figure like the boxplot and individual values, provided, above. We refer to this as Figure
1.)

Post-hoc Tukey tests that adjust p-values and 95% CI’s of contrasts for multiple comparisons revealed little
evidence for a difference in mean hue angle between the original level (mean +/- SE; 95% CI’s: 20.5 +/-
1.23; 18.0 to 23.1; Figure 1) and the uninfected level (18.7 +/- 1.42; 15.8 to 21.6; Figure 1) (contrast estimate
mean +/- SE: 1.89 +/- 1.88; t ratio = 1.004; p = 0.5801). This result is consistent with the hypothesis that
injecting bacteria, per se, causes little change in hue angle (95% CI’s suggest that injection increases hue
angle by 2.75 to -6.52).

By comparison, strong evidence suggests mean hue angle of the infected level (37.8 +/- 1.28; 95% CT’s
35.2 to 40.4) exceeded that of the original level (contrast estimate: 17.28 +/- 1.78; 95% CT’s: 12.89 to
21.67; t ratio = 9.719; p < 0.0001) and the uninfected level (contrast estimate: 19.16 +/- 1.91; 95% CD’s:
14.44 to 23.89; t ratio = 10.011; p < 0.0001). The 95% CT’s for these two contrasts are similar, and suggest
that infection increases hue angle (yielding more green) by approximately 13 to 23 degrees (alternatively, by
approximately 50% to 100%) compared to mean original and uninfected levels.

Note that we used 95% CI’s of effect sizes to describe a plausible range of effects.
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