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These answers provide less detail than those you will have received for your 1-Factor glm homework. However,
the process to analyze these data is comparable, so please feel free to refer to previous answer sets to find
words of wisdom (or approximations thereof).

Question 1 - Pinecones
We begin by importing the data:
pine <- read.table("pinecones.csv",sep=',',header=TRUE)

Here, we have saved the dataset in the object, pine.

Let’s get familiar with the data. We’ll start by looking at the dataset:
pine

## habitat conemass
## 1 island.absent 9.6
## 2 island.absent 9.4
## 3 island.absent 8.9
## 4 island.absent 8.8
## 5 island.absent 8.5
## 6 island.absent 8.2
## 7 island.present 6.8
## 8 island.present 6.6
## 9 island.present 6.0
## 10 island.present 5.7
## 11 island.present 5.3
## 12 mainland.present 6.7
## 13 mainland.present 6.4
## 14 mainland.present 6.2
## 15 mainland.present 5.7
## 16 mainland.present 5.6

We can see that the dataset has two columns: habitat and conemass. Let’s get a summary of the data now:
summary(pine)

## habitat conemass
## Length:16 Min. :5.300
## Class :character 1st Qu.:5.925
## Mode :character Median :6.650
## Mean :7.150
## 3rd Qu.:8.575
## Max. :9.600
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The column, habitat, has three levels: island.absent, island.present, and mainland.present; these
have 6, 5 and 5 observations, respectively (not a very big dataset). The column, conemass, has an average
value of 7.15, with a range of 5.3 to 9.6.

OK! The experiment aims to compare conemass among three different habitats (which are noted in the
column, habitat). Let’s ask ourselves, “Which column contains the dependent variable, and which contains
the independent variable?”.

Give our biological question, it makes most sense to say that conemass depends on habitat; i.e., conemass
is the dependent variable, and the independent variable is habitat. This is consistent with asking whether
conemass differs among habitats.

With this in mind, and now that we’re familiar with the structure of our dataframe, we can begin our analysis
by plotting the data:
boxplot(conemass ~ habitat, data=pine,cex.axis = 1.2, xlab = "", ylab = "")
stripchart(conemass ~ habitat, data=pine,

vertical = TRUE, method = "jitter",
pch = 21, col = "maroon", bg = "bisque",
add = TRUE)

mtext("Pine cone mass",2,line=2.5,cex=1.5)

island.absent island.present mainland.present
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What can we conclude from this plot?

• There are no obvious outliers
• The boxplots are all fairly symmetrical, suggesting that the residuals will be normally distributed
• The breadth of the boxplots is also similar among the habitat types, suggesting that the data will meet

the assumption of equal variance.
• The pinecone mass in the island.absent habitat appears to equal approximately 9.0, and is about 2.5

units larger than for island.present and mainland.present
• Pinecone mass does not appear to differ between island.present and mainland.present

These observations have prepared us for our analysis because we already have a good sense of what to
expect: our data should meet the assumptions of the analysis, and we have expectations regarding the size of
differences (or lack thereof) between the three treatments.

With this in mind, let’s model our data. Remember that we decided that conemass was the dependent
variable. Therefore, we can model the data as:
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p.lm <- lm(conemass ~ habitat, data=pine)

We saved the output of the model in the object, p.lm, which we will use for several purposes, below.

After running a model, we always check the assumptions before we proceed:
plot(p.lm)
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Let’s focus on the first three plots, above.

The first plot allows us to test the assumption of equal variance. We can see three columns of residuals, one at
the right of the plot (at about 8.8 along the x-axis), and two columns very close toegther at the left (at about
6.05 and 6.10). These three columns represent the three treatments. The (vertical) distribution of residuals
is very similar among the three columns, indicating that the data meet the assumption of equal variance.
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The second plot allows a test of normally distributed residuals. This plot looks fine (we check whether the
points fall along the dotted line): a few points fall far from the dotted line, but this is alright; it is also
difficult to test normality with such a small dataset.

The third plot provides another perspective to test the assumption of equal variance. We see that the red line
is relatively straight, which is consistent with equal variance. We also see that the points are relatively evenly
distributed above and below the red line (also consistent with equal variance), except that the points below
the red line on the right of the figure are a bit ‘stretched out’. Overall we’re happy that this plot suggests
equal variance.

At this point, we’re satisfied that the data meet the assumptions of equal variance and normality. The paper
from which these data came indicates that the data were randomly sampled and are independent. Therefore,
our data meet the assumptions and we can check the results.

We’ll begin by looking at the summary of the lm() output:
summary(p.lm)

##
## Call:
## lm(formula = conemass ~ habitat, data = pine)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.780 -0.405 -0.040 0.505 0.720
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.9000 0.2212 40.238 4.97e-15 ***
## habitatisland.present -2.8200 0.3281 -8.596 1.01e-06 ***
## habitatmainland.present -2.7800 0.3281 -8.474 1.18e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5418 on 13 degrees of freedom
## Multiple R-squared: 0.8851, Adjusted R-squared: 0.8675
## F-statistic: 50.09 on 2 and 13 DF, p-value: 7.787e-07

Let’s begin by figuring out which level of habitat has been assigned to the Intercept(). In the second and
third rows, we find both island.present and mainland.present listed; therefore Intercept() must refer
to island.absent (this is also expected, as island.absent is the first in alphabetical order, which is how
R assigns the Intercept()).

Let’s focus on the output for the coefficients. This output matches our expectations from our plot, above:

1. The (Intercept), i.e., the mean value of island.absent (see Estimate column), equals 8.9; this
nicely matches with our guess of about 9.0 when we examined the boxplot. The p-value for this mean
(i.e., in column Pr(>|t|)) equals 4.97e-15 (i.e., 4.97 * 10-15), indicating that the mean pinecone mass in
island.absent habitats significantly differs from zero. This is not exciting, because we’d never expect
pinecones to have a mass that equals zero.

2. Let’s look now at the Estimate values for island.present and mainland.present (i.e., the second
and third rows of the Coefficients). These values equal -2.82 and -2.78, respectively, and indicate that
the mean values of the island.present and mainland.present treatments are 2.82 and 2.78 units
less than the mean value for island.absent (the (Intercept)) (i.e. the minus sign indicates that
these means are smaller than the intercept). Again, these values match our expectations from the
boxplot: there, we predicted that the means of these latter two treatments would be approximately
2.5 units smaller than that for island.absent. The p-values in these rows (1.01e-06 and 1.18e-06,
respectively) are both very small, providing strong evidence that that these estimates of differences
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from the (Intercept) differ from zero. i.e., the mean of these two habitat types differ from the mean
of ‘island.absent’. We will return to this when we examine the output of a pairs() function, below.

Consider what we have gained by examining the summary of our model, p.lm, as we did just above: we
confirmed our intuition, and obtained information about the effect sizes for this experiment.

Now, we can look at an ANOVA table for our model output:
anova(p.lm)

## Analysis of Variance Table
##
## Response: conemass
## Df Sum Sq Mean Sq F value Pr(>F)
## habitat 2 29.404 14.7020 50.085 7.787e-07 ***
## Residuals 13 3.816 0.2935
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output displays a p-value (Pr(>F)) that is very small, suggesting strong evidence that conemass depends
on habitat; i.e., we can reject our null hypothesis that the mean conemass was equal among the levels of
habitat. But, this result does not tell us which habitat types differ from which; this result also does not tell
us about the effect sizes.

To determine which habitat types differ from which and to obtain effect sizes, we will perform a post-hoc
(Tukey) test using two functions in the emmeans library.
library(emmeans)
p.emmeans <- emmeans(p.lm,"habitat")
p.emmeans

## habitat emmean SE df lower.CL upper.CL
## island.absent 8.90 0.221 13 8.42 9.38
## island.present 6.08 0.242 13 5.56 6.60
## mainland.present 6.12 0.242 13 5.60 6.64
##
## Confidence level used: 0.95

The output, above, indicates the mean values of the three habitat types, with their Standard Errors and
95% Confidence Intervals. (This is very useful when reporting results!). Generally, the function emmeans can
compute estimated marginal means (EMMs) for specified factors or factor combinations in a linear model. In
other words, emmeans can calculate the mean values for something, having taken into account the influence
of other variables included in a model (in our current model, there is only one independent variable).

Note that we used the function emmeans to first calculate the mean values (or, EMMs) that interest us (i.e.,
the mean values that we wish to compare with one another); we will use these mean values in the pairs()
function, below. Note as well how we specified the emmeans function: emmeans(p.lm,"habitat"). Within
this statement, we first indicated the output of the analysis that we wished to use: this is p.lm, the object
in which we saved the output from the function, lm(). Second, we indicated the independent variable in
the model for which we want to estimate means for its three levels (island.absent, island.present, and
mainland.present).

Before we continue, compare the means (emmean) from the p.emmeans output with the Estimate values of
the Coefficients in the output from summary(p.lm), on the previous page. Convince yourself that these sets
of output are consistent. (If you’re unsure, ask for help.)

Now that we’ve calculated the mean values (EMMs) of conemass for the three levels of habitat, we can
compare them using a Tukey test. We do this using the pairs() function (a part of the emmeans library).

6



We make comparisons among the pairs of means of habitat types, and save the results of these comparisons
in the object we’ll call p.pairs:
p.pairs <- pairs(p.emmeans)
p.pairs

## contrast estimate SE df t.ratio p.value
## island.absent - island.present 2.82 0.328 13 8.596 <.0001
## island.absent - mainland.present 2.78 0.328 13 8.474 <.0001
## island.present - mainland.present -0.04 0.343 13 -0.117 0.9925
##
## P value adjustment: tukey method for comparing a family of 3 estimates

There are two main conclusions that we can draw from this output. First, we can obtain p-values for
comparisons of mean values among treatment pairs. Notice that each row has a different ‘contrast’, listed
in the left-hand column. For example, the first row shows the results from comparing the mean value of
island.absent treatment vs. the mean value of island.present treatment. The column estimate reveals
the size of the difference between these means; this is a measure of effect size; the column SE displays the
Standard Error for this effect size; i.e., SE, here, provides a sense of uncertainty (due to sampling error) in
our estimate of the size of the difference between the mean of the island.absent treatment and the mean
of the island.present treatment.

Before we proceed with looking at the p-values, compare the estimate values and SE values in the output
of p.pairs to the Estimate and Std. Error in the output of, summary(p.lm), above. (Focus on the
comparisons between the island.absent treatment and the remaining treatments; remember that the mean
of island.absent is assigned to the (Intercept) in the output of summary(p.lm)). What do you notice?

You should notice that the estimates and SE’s are identical for the two outputs. If this output is identical,
why did we not simply use the output from summary(p.lm) in order to make comparisons among treatments?
Here are a few reasons:

1. The output from summary(p.lm) does not include all of the comparisons that we’d like. For instance, it
does not include a comparison between the means values of the island.present and mainland.present
treatments.

2. While the estimates and SE’s are identical between the outputs, the p-values are not. Notice in the
output from p.pairs the comment, P value adjustment: tukey method for comparing a family
of 3 estimates. This implies that the pairs() function adjusted the p-values (and only the p-values)
using the Tukey method to account for multiple comparisons. Recall that this is the reason for using
Tukey test: to adjust p-values in a manner that ensures that we do not inflate our Type 1
error rate due to making multiple comparisons. This means that we should use the p-values
from the output of p.pairs to help decide whether we have evidence that the mean values differ
between treatment groups.

The p-values in p.pairs provide strong evidence that the island.absent treatment differs from the other two
treatments (both p-values < 0.0001), but we have no evidence that the latter two treatments (island.present
and mainland.present) differ from each other (p-value = 0.9925). Moreover, if we look at the estimate of
the difference between island.present and mainland.present, we see that this effect size (-0.04) is very
close to zero; this observation provides further evidence that there is very little difference in mean conemass
between the island.present and mainland.present treatments.

As a final step in our analysis, we should obtain 95% Confidence Intervals for our estimates of effect size. We
do this to provide an indication of the uncertainty in our estimates of effect size. We can use the confint()
function to obtain these 95% CI’s:
confint(p.pairs)

## contrast estimate SE df lower.CL upper.CL
## island.absent - island.present 2.82 0.328 13 1.954 3.686
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## island.absent - mainland.present 2.78 0.328 13 1.914 3.646
## island.present - mainland.present -0.04 0.343 13 -0.945 0.865
##
## Confidence level used: 0.95
## Conf-level adjustment: tukey method for comparing a family of 3 estimates

This output provides 95% Confidence Intervals for the effect sizes; note, however, that these 95% Confidence
Intervals have been adjusted to account for multiple comparisons, which makes the 95% CI’s wider. Note
that, if we wanted to obtain 95% CI’s for our effect sizes without adjusting for multiple comparisons, we
could calculate those, instead. Whether we report 95% CI’s for effect sizes that are adjusted for multiple
comparisions or not is a matter of some debate, and will be addressed in a future video.

What do these 95% CI’s tell us? Loosely speaking, they indicate a range of plausible differences (ef-
fect sizes) in conemass between the habitat treatment combinations. Note that the lower 95% CI’s
(Lower.CL) for the effect size is approximately 1.9 when comparing island.absent to the remaining treat-
ments. What does this mean, biologically? This means that we can say with reasonable confidence that
the difference in mean conemass between the island.absent treatment and the remaining treatments
is at least 1.9. If we consider that the mean conemass in the treatments where squirrels were present
(island.present and mainland.present) is about 6.1 (see p.emmeans output), then ‘island’ sites that lack
squirrels (island.absent) produce cones that at least ~31% larger (1.9 / 6.1 = 0.311). To me, this
suggests a very big biological effect of squirrels on conemass; e.g., if conemass is directly proportional to seed
production, then this result suggests that seed production will be much higher in the absence of squirrels.

To complete an analysis, we always want to have a biological interpretation of the results. I’ve indicated some
of this interpretation in the paragraph immediately above: sites that do vs. do not have squirrels differ greatly
in the mass of cones produced by trees. As trees produce larger cones in sites where squirrels are absent, this
presumably suggests that squirrels impose natural selection that leads trees to produce smaller cones.

There’s one further aspect to our biological interpretation: what can we learn from the lack of difference
between the island.present and mainland.present treatments? These two treatments differed with respect
to the type of forest that surrounded the study sites. The lack of difference (inferred both from the p-value
and effect size) in conemass between these treatments suggests that cones in ‘island’ habitats are similar to
those in ‘mainland’ habitats; i.e., there is nothing unusual about ‘islands’ with respect to conemass.

How might we report these results? We will not provide a complete example, but we’ll provide some
pieces.

First, you want to ensure that you plot the data and include a figure legend that explains how to interpret
the plot.

You also want to state which assumptions were tested and how:

• Random sampling or allocation to treatment: we assumed this is met from the experimental design;
• Independence within treatments: we assumed this is met from the experimental design;
• Equal variance: the data meet this assumption based on visualizing residuals;
• Normally distributed residuals: the data meet this assumption based on visualizing residuals.

And, report your results. . .

A 1-Factor GLM provided strong evidence that habitat influences conemass (F(2,13) = 50.085; p =
7.8e-07). When squirrels were present, conemass was similar between island sites (mean +/- SE; 95% CI’s:
6.08 +/- 0.242; 5.56 to 6.60) and mainland sites (6.12 +/- 0.242; 5.60 to 6.64) (Contrast estimate +/- SE:
-0.04 +/- 0.343; t ratio = -0.117; Tukey Adjusted p-values and 95% CI’s: p = 0.9925; 95% CI’s: -0.945 to
0.865), suggesting surrounding habitat does not influence conemass.

On the other hand, conemass in island sites where squirrels were absent (8.90 +/- 0.221; 8.42 to 9.38) was
greater than both in both island sites with squirrels present (Contrast estimate: 2.82 +/- 0.328; t ratio =
8.596; Tukey adjusted p-values and 95% CI’s: p < 0.0001, 1.95 to 3.69) and mainland sites with squirrels
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present (2.78 +/- 0.328, t ratio = 8.474; p < 0.0001, 1.91 to 3.65). This result is consistent with the
hypothesis that conemass is greater in the absence of squirrels.

Finally, we should include some kind of perspective on the size of the differences and their biological
interpretation, as suggested, above.

Questions 2 - Eelgrass
Please note that answers to questions 2 & 3 will include less commentary than for Question 1. The general
procedure is similar for all three questions, as are the things to look out for. We encourage you to explore your
output for Questions 2 & 3 is the same detail as done for Question 1, but we will not repeat all explanations
here.

In this question, Reusch et al. (2005) aimed to test whether genetic diversity of a species in a region affects
the abundance of that species.

Let’s begin by importing the data:
eg <- read.table("eelgrass.csv", header = TRUE, sep = ',')

Let’s look at the data:
eg

## treatmentGenotypes shoots
## 1 1_genotype 71
## 2 1_genotype 61
## 3 1_genotype 49
## 4 1_genotype 38
## 5 1_genotype 36
## 6 1_genotype 32
## 7 1_genotype 30
## 8 1_genotype 28
## 9 1_genotype 27
## 10 1_genotype 21
## 11 1_genotype 14
## 12 1_genotype 11
## 13 3_genotypes 67
## 14 3_genotypes 58
## 15 3_genotypes 53
## 16 3_genotypes 52
## 17 3_genotypes 47
## 18 3_genotypes 46
## 19 3_genotypes 41
## 20 3_genotypes 36
## 21 3_genotypes 35
## 22 3_genotypes 20
## 23 6_genotypes 86
## 24 6_genotypes 84
## 25 6_genotypes 69
## 26 6_genotypes 64
## 27 6_genotypes 62
## 28 6_genotypes 48
## 29 6_genotypes 45
## 30 6_genotypes 31
## 31 6_genotypes 47
## 32 6_genotypes 45
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The dataset has two columns: treatmentGenotypes and shoots. Now let’s obtain a summary:
summary(eg)

## treatmentGenotypes shoots
## Length:32 Min. :11.00
## Class :character 1st Qu.:31.75
## Mode :character Median :45.50
## Mean :45.44
## 3rd Qu.:58.75
## Max. :86.00

The column treatmentGenotypes has three levels, with either 1, 3 or 6 genotypes (these levels have 12, 10
and 10 datapoints, respectively). The mean number of shoots equals 45.44, with a range from 11.00 to 86.00.

Let’s plot the data to get a sense of what to expect. Which variable will be the dependent variable? Our
biological question is whether the number of genotypes (treatmentGenotypes) affects the number of shoots
in a patch. This implies that shoots is the dependent variable, and treatmentGenotypes is the independent
variable. With this in mind, we can plot the data as follows:
boxplot(shoots ~ treatmentGenotypes, data=eg, cex.axis = 1.2, xlab = "", ylab = "")
stripchart(shoots ~ treatmentGenotypes, data=eg,

vertical = TRUE, method = "jitter",
pch = 21, col = "maroon", bg = "bisque",
add = TRUE)

mtext("Number of shoots",2,line=2.5,cex=1.5)
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What do we learn from this plot?

• The boxplots are fairly symmetrical, implying that the data are likely normally distributed.
• There are no outliers to worry about.
• The breadth of the boxplots is fairly similar among the three treatments; this suggests that our data

will meet the assumption of equal variance.
• shoots (y-axis) seems to increase as the number of genotypes (treatmentGenotypes) increases. Specif-

ically, it looks like the mean number of shoots increases from about 35 for the first treatment
(1_genotype), to about 45 (an increase of 10) for the second treatment; the average of the third
treatment is about 25 larger than the first treatment.
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With these predictions in hand, let’s make a model.

We’ve already decided that shoots is the dependent variable. Therefore, our model will be:
eg.lm <- lm(shoots ~ treatmentGenotypes, data = eg)

Let’s check our assumptions:
plot(eg.lm)
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The first plot indicates that the data meet the assumptions of equal variance. In the second plot, a number
of data points fall off of the dotted line, but overall this qqplot indicates that the data meet the assumption
of normality. We can also plot the data in this way, to see that the data adequately meet the assumption of
normality:
hist(eg.lm$residuals)

Histogram of eg.lm$residuals
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The third residual plot is also consistent with equal variance.

Now that we’re satisfied that the data meet the assumptions, we can examine the model output. Let’s start
by looking at the model summary to check that the model provides our expected results (this is always a
wise way to check whether we’ve thought our analysis through correctly):
summary(eg.lm)

##
## Call:
## lm(formula = shoots ~ treatmentGenotypes, data = eg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.100 -10.650 -1.167 8.350 36.167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 34.833 4.809 7.243 5.64e-08 ***
## treatmentGenotypes3_genotypes 10.667 7.133 1.495 0.14563
## treatmentGenotypes6_genotypes 23.267 7.133 3.262 0.00283 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 16.66 on 29 degrees of freedom
## Multiple R-squared: 0.2684, Adjusted R-squared: 0.2179
## F-statistic: 5.319 on 2 and 29 DF, p-value: 0.01077

Which treatment level of treatmentGenotypes is the (Intercept)? By process of elimination, we can see
that the (Intercept) represents the mean value of treatment 1_genotype.

Notice that the Estimate values match our expectations from our plot, above. Also, we see that the p-values
indicate that the mean value of shoots differs between the treatments 1_genotypes and 6_genotypes. (But
remember that these p-values do not account for multiple comparisons.)

With this in mind, let’s check the overall p-value of our model:
anova(eg.lm)

## Analysis of Variance Table
##
## Response: shoots
## Df Sum Sq Mean Sq F value Pr(>F)
## treatmentGenotypes 2 2952.8 1476.40 5.3193 0.01077 *
## Residuals 29 8049.1 277.55
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-value for the overall model equals 0.01077. Overall, this represents moderate, or ‘suggestive’ evidence
for an effect of Genotype diversity on number of shoots. Therefore we are somewhat justified to reject the Null
hypothesis that the mean values of the three treatments all equal one another; i.e., we tentatively conclude
that some mean values differ among the levels of treatmentGenotype. But, which treatments differ from
which? We need a post-hoc test to answer this question and to estimate effect sizes; we’ll use a Tukey test, as
implemented in ’emmeans‘. We’ll start by calculating the mean values of each treatment:
eg.emmeans <- emmeans(eg.lm, "treatmentGenotypes")
eg.emmeans

## treatmentGenotypes emmean SE df lower.CL upper.CL
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## 1_genotype 34.8 4.81 29 25.0 44.7
## 3_genotypes 45.5 5.27 29 34.7 56.3
## 6_genotypes 58.1 5.27 29 47.3 68.9
##
## Confidence level used: 0.95

These results present the means of each treatment group, as well as SE’s and 95% CI’s for each group; a final
report would include this information. As well, the next stage of our analysis will compare these means to
one another, using the pairs() function:
eg.pairs <- pairs(eg.emmeans)

Let’s look at the output of the pairs() function, which we stored in the object, eg.pairs:
eg.pairs

## contrast estimate SE df t.ratio p.value
## 1_genotype - 3_genotypes -10.7 7.13 29 -1.495 0.3079
## 1_genotype - 6_genotypes -23.3 7.13 29 -3.262 0.0077
## 3_genotypes - 6_genotypes -12.6 7.45 29 -1.691 0.2256
##
## P value adjustment: tukey method for comparing a family of 3 estimates

The left-most column, contrast, indicates which sets of means are being compared (i.e., the first row
compares the means from treatment 1_genotype vs. 3_genotypes). The column, estimate, provides the
estimated difference between the means of the two treatments; notice that all the estimates are negative
because in all cases a larger mean was subtracted from a smaller mean (also notice the similarity to the
Estimate reported in summary(eg.lm), above). SE indicates the standard error for the estimated difference
between the means, and could be used to generate 95% CI’s for these estimated differences. Finally, we see
Pr(>|t|), the p-values for these comparisons. Only one p-value provides reaonable evidence to a differene
between treatments, which corresponds to the comparison between 1_genotype and 6_genotypes. (We
might have guessed this when we plotted our data at the start of this analysis!). Overall, this stage of the
analysis indicates that we do have evidence that changing genetic diversity affects the number of shoots;
specifically, the treatment with highest diversity had more shoots than the treatment with the lowest diversity.
The effect size indicates that increasing genetic diversity from 1 to 6 genotypes almost doubled the number of
shoots.

Our reported results should include 95% CI’s for the effect sizes, which are calculated like this:
confint(eg.pairs)

## contrast estimate SE df lower.CL upper.CL
## 1_genotype - 3_genotypes -10.7 7.13 29 -28.3 6.95
## 1_genotype - 6_genotypes -23.3 7.13 29 -40.9 -5.65
## 3_genotypes - 6_genotypes -12.6 7.45 29 -31.0 5.80
##
## Confidence level used: 0.95
## Conf-level adjustment: tukey method for comparing a family of 3 estimates

At this stage we should be thinking clearly about the biological interpretation of these results. The effect
size is important: the finding that shoot number almost doubled when increasing genetic diversity in this
experiment (and this effect was had strong statistical support) implies that genetic diversity can strongly
affect growth and/or survival.

We can say something more about the differences between the treatments. We find little evidence that the
number of shoots produced in the 3_genotypes treatment differs from either the 1_genotype or 6_genotypes
treatments. However, the estimated effect sizes suggest potentially large effects: the number of shoots differs
by about 50% when comparing 3_genotypes to the remaining treatments. Thus, although we did not detect
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differences with strong statistical support, there is reason to believe that the differences could prove important
with further study.

On that point, it is worth noting that, perhaps, we did not analyze the data in an optimal manner. The
original biological question could have been asked as, “Does the number of shoots increase with the genetic
diversity of plots?”. This phrasing would suggest that we’re really interested in a relationship between the
number of genotypes and the numbers of shoots produced; e.g., is there a linear relationship between these
variables (see our plot of these data)? This kind of analysis is called a regression, which we’ll learn in the
near future.

Reporting the results

Provide a figure, as described in Question 1.

Address the assumptions, as done in Question 1.

A 1-Factor GLM provides moderate evidence that genotype diversity affects shoot number (F(2,29) = 5.32;
p = 0.011). Shoot number under six genotypes (mean +/- SE; 95% CI’s: 58.1 +/- 5.27; 47.3 to 68.9) was
approximately twice as great as when a single genotype occurred (34.8 +/- 4.81; 25.0 to 44.7) (Contrast
estimate +/- SE: -23.3 +/- 7.13; t ratio = -3.262; Tukey adjusted p-value = 0.0077). However (Tukey
adjusted) 95% CI’s for this contrast (-40.9 to -5.65) suggest that shoot number might increase by as little as
~ 16% (i.e., 5.65/34.8) to as much as 117%.

Shoot number in the three-genotype treatment (45.5 +/- 5.27; 34.7 to 56.3) tended to be intermediate between
that of treatments with one genotype (Contrast 1 genotype - 3 genotypes estimate +/-SE: -10.7 +/- 7.13; t
ratio = -1.495; Tukey adjusted p-value and 95% CI’s: p = 0.3079; -28.3 to 6.95) and that with six genotypes
(Contrast 3 genotype - 6 genotypes estimate: -12.6 +/- 7.45; t ratio = -1.691; Tukey adjusted p-value and
95% CI’s: p = 0.2256; -31.0 to 5.80).

Question 3 - tsetse learning
This experiment has only two treatments. As a result we could analyze these data using a t-test. But, we’ll
use a 1-Factor general linear model just for practice.

Let’s import the data:
tse <- read.table("tsetselearning.csv", header = TRUE, sep = ',')

And, let’s look at the dataset:
tse

## treatment proportionCow
## 1 lizard 0.66
## 2 lizard 0.58
## 3 lizard 0.52
## 4 lizard 0.37
## 5 lizard 0.35
## 6 lizard 0.34
## 7 lizard 0.29
## 8 cow 1.00
## 9 cow 0.98
## 10 cow 0.97
## 11 cow 0.96
## 12 cow 0.87
## 13 cow 0.83

It is a small dataset; only 13 datapoints. We have two variables: proportionCow (the proportion of flies that
fed on cows) and treatment, which notes whether the flies previously fed on cows vs. lizards, before being
offered cow.
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We can summarise the data as follows:
summary(tse)

## treatment proportionCow
## Length:13 Min. :0.2900
## Class :character 1st Qu.:0.3700
## Mode :character Median :0.6600
## Mean :0.6708
## 3rd Qu.:0.9600
## Max. :1.0000

Given that the dataset is so small, our summary(tse) does not reveal much that we couldn’t glean from
looking at the complete dataset.

Let’s begin our analysis by plotting the data. Which variable will be the dependent variable? The biological
question is, “Does previous experience of feeding on cow vs. lizard affect a fly’s decision to feed when presented
with cow, later?” This question implies that proportionCow will be the dependent variable; we’ll plot the
data as:
boxplot(proportionCow ~ treatment, data=tse, cex.axis = 1.2, xlab = "", ylab = "", ylim = c(0,1))
stripchart(proportionCow ~ treatment, data=tse,

vertical = TRUE, method = "jitter",
pch = 21, col = "maroon", bg = "bisque",
add = TRUE)

mtext("Proportion feed from cow",2,line=2.5,cex=1.5)
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This plot reveals:

• The data may be normally distributed (largely symmetrical boxplots), but with so few datapoints it is
hard to know with certainty.

• It is unclear whether the variance is equal between the treatments.
• We expect a strong difference between the treatments (note the lack of overlap in the distributions of

the two treatments). This difference is likely to be about 0.5
• Our y-axis reminds us that the dependent variable is a proportion. Proportions are unlikely to be

normally distributed, and we might be advised to try transforming the data. . . But we’ve not learned
that yet! We’ll learn to do so in future videos; for the moment we’ll push onward.
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With these predictions in mind, and remembering that the dependent variable is proportionCow, we can
model the data like this:
tse.lm <- lm(proportionCow ~ treatment, data=tse)

Let’s check the assumptions:
plot(tse.lm)
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From this plot we note:

1) from the first plot, it is difficult to tell whether the variances are (sufficiently) equal;
2) the second plot suggests that the data are reasonably normally distributed.
3) The third plot is worrying with respect to equal variance.

The potential for unequal variance is worrying. In future videos we’ll learn how to deal with this (e.g.,
transform the data, or use a Welch’s t-test). For now, however, just for the sake of practice, we’ll continue
our analysis but bear in mind that unequal variance might impact our results.

Let’s look at the summary of our model output:
summary(tse.lm)

##
## Call:
## lm(formula = proportionCow ~ treatment, data = tse)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.15429 -0.09429 0.02500 0.06500 0.21571
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.93500 0.04657 20.078 5.12e-10 ***
## treatmentlizard -0.49071 0.06346 -7.733 9.01e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1141 on 11 degrees of freedom
## Multiple R-squared: 0.8446, Adjusted R-squared: 0.8305
## F-statistic: 59.79 on 1 and 11 DF, p-value: 9.011e-06
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This output differs from that in Questions 1 & 2 in that, here, we have only two treatments. By process
of elimination, we infer that the (Intercept) corresponds to the mean value of proportionCow for the
treatment, cow. Its Estimate (0.935) matches our plot of the data, above.

The second row of the Coefficients indicates the difference between the mean proportionCow for the
treatments cow vs. lizard. Its Estimate equals -0.49071, which matches our initial guess of about 0.5 when
we plotted the data, above. This value (0.49071) is the effect size in this experiment, and we can use the Std.
Error for this estimate as the standard error of our effect size (which we could convert to a 95% confidence
interval, if we wished). The p-value for this difference (see Pr(>|t|)) equals 9.01e-06 (i.e., 0.00000901), which
is very small. Hence, we have strong evidence to reject the Null hypothesis that the mean values of the cow
and lizard treatments are equal.

How does this p-value compare to a p-value that we obtain using the anova() command?
anova(tse.lm)

## Analysis of Variance Table
##
## Response: proportionCow
## Df Sum Sq Mean Sq F value Pr(>F)
## treatment 1 0.77797 0.77797 59.793 9.011e-06 ***
## Residuals 11 0.14312 0.01301
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can see that the p-values are identical. This is because the analysis only has two treatments.

Do we need to perform a post-hoc test (e.g., Tukey test)? No. We only perform a post-hoc test when we
wish to determine which treatments differ from which; we do not need to do this when an experiment has
only two treatments because, in this case, it is obvious which treatments differ (it must be that the ‘cow’
treatment differs from the ‘lizard’ treatment). As we do not need to perform a post-hoc test, and we can
obtain an estimate of the effect size and its SE from the output of summary(tse.lm), we’ve got pretty much
everything we need to report our results. But, we’re missing 95% CI’s for our effect size and estimates of ean
mean (with SE and 95% CI). We’ll get them like this:
tse.emmeans <- emmeans(tse.lm, "treatment")
tse.emmeans

## treatment emmean SE df lower.CL upper.CL
## cow 0.935 0.0466 11 0.833 1.037
## lizard 0.444 0.0431 11 0.349 0.539
##
## Confidence level used: 0.95
confint(pairs(tse.emmeans))

## contrast estimate SE df lower.CL upper.CL
## cow - lizard 0.491 0.0635 11 0.351 0.63
##
## Confidence level used: 0.95

Or final step is to interpret the results in terms of biology. The experiment set out to test whether the tsetse
fly learned from prior exposure to eating either cow or lizard. The results reveal that flies that previously fed
on cows were highly likely to feed on cow again (about 93.5% of flies who had previously fed on cows decided
to feed on cow again), but flies that has previously fed on lizard were much less likely to feed when presented
with cow later on. Notably, this effect was large: only about half the flies that had previously fed on lizard
decided to feed on cows. These results suggest that prior feeding experience strongly influences subsequent
feeding behaviour in the tsetse fly. Do we call that learning? I don’t know. But it does suggest that the
environment affects a tsetse fly’s behaviour.
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Reporting

Plot your data with useful legend.

Discuss assumptions (we’re worried. . . we should use methods we’ll learn later in this course to address the
problems).

A 1-Factor GLM revealed strong evidence that prior feeding experience affected feeding preference (F(1,11)
= 59.793; p = 9.01e-06). The proportion of flies that fed on cows after being initially presented with lizards
(mean +/- SE; 95% CI: 0.444 +/- 0.0431; 0.349 to 0.539) was lower than that observed when flies that had
initially fed on cows (0.935 +/- 0.0466; 0.833 to 1.037) (contrast estimate +/- SE: 0.491 +/- 0.0635). Indeed,
95% CI’s for this contrast suggest that the proportion of tse flies that subsequently fed on cow was between
0.351 to 0.63 greater when tse flies had initially fed on cow compared to when they had initially fed on lizard.
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