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Statistical Practice

The Abuse of Power: The Pervasive Fallacy of Power
Calculations for Data Analysis

John M. HOENIG and Dennis M. HEISEY

It is well known that statistical power calculations can be
valuable in planning an experiment. There is also a large lit-
erature advocating that power calculations be made when-
ever one performs a statistical test of a hypothesis and one
obtains a statistically nonsigni� cant result. Advocates of
such post-experiment power calculations claim the calcu-
lations should be used to aid in the interpretation of the
experimental results. This approach, which appears in vari-
ous forms, is fundamentally � awed. We document that the
problem is extensive and present arguments to demonstrate
the � aw in the logic.

KEY WORDS: Bioequivalence testing; Burden of proof;
Observed power; Retrospective power analysis; Statistical
power; Type II error.

1. INTRODUCTION

It is well known among applied scientists that a lack of
impact or e¡ect is not su ciently established by a failure
to demonstrate statistical signi� cance. A failure to reject
the null hypothesis of no e¡ect may be the result of low
statistical power when an important e¡ect actually exists
and the null hypothesis of no e¡ect is in fact false. This can
be called the dilemma of the nonrejected null hypothesis:
what should we do when we fail to reject a hypothesis?

Dismayingly, there is a large, current literature that advo-
cates the inappropriate use of post-experiment power cal-
culations as a guide to interpreting tests with statistically
nonsigni� cant results. These ideas are held tenaciously in a
variety of disciplines as evidenced by methodological rec-
ommendations in 19 applied journals (Table 1). In our ex-
perience as consulting statisticians, authors are not infre-
quently required to perform such calculations by journal
reviewers or editors; at least two journals ask for these cal-

John M. Hoenig is Professor, Virginia Institute of Marine Science, Col-
lege of William and Mary, Gloucester Point, VA 23062 (E-mail: hoenig@
vims.edu). Dennis M. Heisey is Statistician, Department of Surgery and
Department of Biostatistics and Medical Informatics, University of Wis-
consin, Madison, WI 53792. Order of authorship determined by random-
ization. The authors thank Marilyn Lewis for research assistance and the
anonymous reviewers for helpful comments. This is VIMS Contribution
No. 2335.

culations as a matter of policy (Anon. 1995; Anon. 1998).
We emphasize that these calculations are sought primarily
with the thought that they are useful for explaining the ob-
served data, rather than for the purpose of planning some
future experiment. We even found statistical textbooks that
illustrate the � awed approach (e.g., Rosner 1990; Winer,
Brown, and Michels 1991; Zar 1996). Researchers need to
be made aware of the shortcomings of power calculations
as data analytic tools and taught more appropriate method-
ology.

It is important to understand the motivation of applied
scientists for using power analysis to interpret hypothesis
tests with nonsigni� cant results. The traditional, widely ac-
cepted standard has been to protect the investigator from
falsely concluding that some treatment has an e¡ect when
indeed it has none. However, there is increasing recognition
that a “reversal of the usual scienti� c burden of proof” (e.g.,
Dayton 1998) is preferred in many areas of scienti� c infer-
ence. Areas where this is a particular concern include mak-
ing decisions about environmental impacts, product safety,
and public welfare where some people want to be protected
from failing to reject a null hypothesis of no impact when
a serious (e.g., harmful or dangerous) e¡ect exists. We be-
lieve that the post-hoc power approaches that have conse-
quently arisen are due to applied scientists being heavily
tradition-bound to test the usual “no impact null hypothe-
sis,” despite it not always being the relevant null hypothesis
for the question at hand.

We describe the � aws in trying to use power calculations
for data-analytic purposes and suggest that statistics courses
should have more emphasis on the investigator’s choice of
hypotheses and on the interpretation of con� dence intervals.
We also suggest that introducing the concept of equivalence
testing may help students understand hypothesis tests. For
pedagogical reasons, we have kept our explanations as sim-
ple as possible.

2. INAPPROPRIATE USES OF POWER ANALYSIS

2.1 “Observed Power”

There are two common applications of power analysis
when a nonrejected null hypothesis occurs. The � rst is
to compute the power of the test for the observed value
of the test statistic. That is, assuming the observed treat-
ment e¡ects and variability are equal to the true parame-
ter values, the probability of rejecting the null hypothesis
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Table 1. Journalswith Articles AdvocatingPost-ExperimentPower
Analysis

American Journal of Physical Anthropology: Hodges and Schell (1988)

American Naturalist: Toft and Shea (1983); Rotenberry and Wiens (1985)

*Animal Behavior: Thomas and Juanes (1996); Anon. (1998)

Aquaculture: Searcy-Bernal (1994)

Australian Journal of Marine and Freshwater Research:
Fairweather (1991)

Behavioral Research Therapy: Hallahan and Rosenthal (1996)

Bulletin of the Ecological Society of America: Thomas and Krebs (1997)

Canadian Journal of Fisheries and Aquatic Sciences:
Peterman (1989, 1990a)

Conservation Biology: Reed and Blaustein (1995, 1997);
Hayes and Steidl (1997); Thomas (1997)

Ecology: Peterman (1990b)

Journal of Counseling Psychology: Fagley (1985)

*Journal of Wildlife Management: (Anon., 1995); Steidl,
Hayes and Schauber (1997)

Marine Pollution Bulletin: Peterman and M’Gonigle (1992)

Neurotoxicology and Teratology: Muller and Benignus (1992)

Rehabilitation Psychology: McAweeney, Forchheimer, and Tate (1997)

Research in the Teaching of English: Daly and Hexamer (1983)

Science: Dayton (1998)

The Compass of Sigma Gamma Epsilon: Smith and Kuhnhenn (1983)

Veterinary Surgery: Markel (1991)

NOTE: indicates journal requires or requests post-experiment power calculations when test
results are nonsigni�cant.

is computed. This is sometimes referred to as “observed
power.” Several widely distributed statistical software pack-
ages, such as SPSS, provide observed power in conjunction
with data analyses (see Thomas and Krebs 1997). Advo-
cates of observed power argue that there is evidence for
the null hypothesis being true if statistical signi� cance was
not achieved despite the computed power being high at the
observed e¡ect size. (Usually, this is stated in terms of the
evidence for the null hypothesis (no e¡ect) being weak if
observed power was low.)

Observed power can never ful� ll the goals of its advo-
cates because the observed signi� cance level of a test (“p
value”) also determines the observed power; for any test
the observed power is a 1:1 function of the p value. A
p value is a random variable, P , on [0; 1]. We represent
the cumulative distribution function (cdf) of the p value as
Pr(P µ p) = G (p), where is the parameter value. Con-
sider a one-sample Z test of the hypothesis H0 : · µ 0 ver-
sus Ha : · > 0 when the data are from a normal distribution
with known ¼ . Let =

p
n· =¼ . Then G (p) = 1 ¡ ©(Zp ¡ ),

where Zp is the 100(1 ¡ p)th percentile of the standard nor-
mal distribution (Hung, O’Neill, Bauer, and Kohne 1997).
That is, Zp is the observed statistic. Both p values and ob-
served power are obtained from G (p). A p value is obtained
by setting · = 0, so G0(p) = 1 ¡ ©(Zp) = p. Observed
power is obtained by setting the parameter to the observed
statistic and � nding the percentile for P < ¬ , so observed
power is given by GZp( ¬ ) = 1 ¡ ©(Z¬ ¡ Zp) and thus the
observed power is determined completely by the p value

and therefore adds nothing to the interpretation of results.
An interesting special case occurs when P = ¬ ; for the
Z test example above it is immediately obvious that ob-
served power = .5 because Z¬ = Zp. Thus, computing ob-
served power can never lead to a statement such as “because
the null hypothesis could not be rejected and the observed
power was high, the data support the null hypothesis.” Be-
cause of the one-to-one relationship between p values and
observed power, nonsigni� cant p values always correspond
to low observed powers (Figure 1). Computing the observed
power after observing the p value should cause nothing to
change about our interpretation of the p value. These results
are easily extended to two-sided tests.

There is a misconception about the relationship between
observed power and p value in the applied literature which
is likely to confuse nonstatisticians. Goodman and Berlin
(1994), Steidl, Hayes, and Schauber (1997), Hayes and
Steidl (1997), and Reed and Blaustein (1997) asserted with-
out proof that observed power will always be less than .5
when the test result is nonsigni� cant. An intuitive coun-
terexample is as follows. In a two-tailed Z test, the test
statistic has the value Z = 1.96 if the test is marginally sig-
ni� cant at ¬ = .05. Therefore, the probability of observing
a test statistic above 1.96, if the true mean of Z is 1.96,
is .5. The probability of rejecting the null hypothesis is the
probability of getting a test statistic above 1.96 or below
¡ 1.96. Therefore, the probability is slightly larger than .5.

Figure 1. “Observed” Power as a Function of the p Value for a One-
Tailed Z Test in Which is Set to .05. When a test is marginally signi�cant
(P = .05) the estimated power is 50%.
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In fact, it is rather easy to produce special examples of test
statistics with skewed distributions that can produce arbi-
trarily high observed powers for p = ¬ .

A number of authors have noted that observed power may
not be especially useful, but to our knowledge a fatal logical
� aw has gone largely unnoticed. Consider two experiments
that gave rise to nonrejected null hypotheses. Suppose the
observed power was larger in the � rst experiment than the
second. Advocates of observed power would interpret this
to mean that the � rst experiment gives stronger support fa-
voring the null hypothesis. Their logic is that if power is
low one might have missed detecting a real departure from
the null hypothesis but if, despite high power, one fails to
reject the null hypothesis, then the null is probably true or
close to true. This is easily shown to be nonsense. For ex-
ample, consider the one-sided Z test described above. Let
Zp1 and Zp2 refer to the observed test statistics in the re-
spective experiments. The observed power was highest in
the � rst experiment and we know this implies Zp1

> Zp2

because observed power is GZp
( ¬ ) which is an increasing

function of the Z statistic. So by usual standards of us-
ing the p value as statistical evidence, the � rst experiment
gives the stronger support against the null, contradicting
the power interpretation. We will refer to this inappropri-
ate interpretation as the “power approach paradox” (PAP):
higher observed power does not imply stronger evidence
for a null hypothesis that is not rejected.

2.2 “Detectable E¡ect Size” and “Biologically
Signi� cant E¡ect Size”

A second, perhaps more intriguing, application of post-
experiment power calculations is � nding the hypothetical
true di¡erence that would have resulted in a particular
power, say .9. This is an attempt to determine the “de-
tectable e¡ect size.” It is applied as follows: an experiment
is performed that fails to reject the null. Then, based on
the observed variability, one computes what the e¡ect size
would have needed to have been to have a power of .9. Ad-
vocates of this approach view this “detectable e¡ect size” as
an upper bound on the true e¡ect size; that is, because sig-
ni� cance was not achieved, nature is unlikely to be near this
state where power is high. The closer the detectable e¡ect
size is to the null hypothesis of 0, the stronger the evidence
is taken to be for the null. For example, in a one-tailed Z
test of the hypothesis H0 : · µ 0 versus Ha : · > 0, one
might observe a sample mean X = 1.4 with ¼ X = 1. Thus,
Z = 1.4 and P = .08, which is not signi� cant at ¬ = .05.
We note that if the true value of · were 3.29 (and ¼ X were
1) we would have power = .95 to reject H0. Hence, 3.29
would be considered an upper bound on the likely value of
the true mean. (Note that a 95% upper con� dence bound
on · would be 3.04. We return to this point later.)

A variant of the “detectable e¡ect size” approach is the
“biologically signi� cant e¡ect size” approach, where one
computes the power at some e¡ect size deemed to be bio-
logically important. The higher the computed power is for
detecting meaningful departures from the null, the stronger
the evidence is taken to be for nature to be near the null
when the null is not rejected.

These inferential approaches have not been justi� ed for-
mally. Cohen (1988, p. 16) claimed that if you design a
study to have high power 1 ¡  to detect departure from
the null hypothesis, and you fail to reject the null hypoth-
esis, then the conclusion that the true parameter value lies
within units of the null value is “signi� cant at the 
level. Thus, in using the same logic as that with which we
reject the null hypothesis with risk equal to ¬ , the null hy-
pothesis can be accepted in preference to that which holds
that ES [the e¡ect size] = with risk equal to  .” (We
have changed Cohen’s notation in the above to conform to
that used here.) Furthermore, Cohen stated (p. 16) “‘proof’
by statistical induction is probabilistic” without elabora-
tion. He appeared to be making a probabilistic statement
about the true value of the parameter which is invalid in a
classical statistical context. Furthermore, because his pro-
cedure chooses the sample size to have a speci� ed, � xed
power before conducting the experiment, his argument as-
sumes that the actual power is equal to the intended power
and, additionally, his procedure ignores the experimental
evidence about e¡ect size and sampling variability because
the value of  is not updated according to the experimen-
tal results. Rotenberry and Wiens (1985) and Searcy-Bernal
(1994) cited Cohen in justifying their interpretation of post-
experiment computed power.

Although many � nd the detectable e¡ect size and biologi-
cally signi� cant e¡ect size approaches more appealing than
the observed power approach, these approaches also suf-
fer from fatal PAP. Consider the previous two experiments
where the � rst was closer to signi� cance; that is, Zp1 > Zp2 .
Furthermore, suppose that we observed the same estimated
e¡ect size in both experiments and the sample sizes were
the same in both. This implies ¼ 1 < ¼ 2. For some desired
level of power ¦ ¬ , one solves ¦ ¬ = 1 ¡ ©(Z¬ ¡

p
n» =¼ ) for

» to obtain the desired detectable e¡ect size, » . It follows
that the computed detectable e¡ect size will be smaller in
the � rst experiment. And, for any conjectured e¡ect size,
the computed power will always be higher in the � rst ex-
periment. These results lead to the nonsensical conclusion
that the � rst experiment provides the stronger evidence for
the null hypothesis (because the apparent power is higher
but signi� cant results were not obtained), in direct contra-
diction to the standard interpretation of the experimental
results (p values).

Various suggestions have been made for “improving”
post-experiment power analyses. Some have noted certain
estimates of general e¡ect sizes (e.g., noncentrality param-
eters) may be biased (Thomas 1997; Gerard, Smith, and
Weerakkody 1998), which potentially could be corrected.
Others have addressed the fact that the standard error used
in power calculations is known imprecisely, and have sug-
gested computing con� dence intervals for post-experiment
power estimates (Thomas 1997; Thomas and Krebs 1997).
This is curious because, in order to evaluate a test result, one
apparently needs to examine power but, in order to evaluate
(test) if power is adequate one does not consider the power
of a test for adequate power. Rather, one switches the in-
ferential framework to one based on con� dence intervals.

The American Statistician, February 2001, Vol. 55, No. 1 21



These suggestions are super� uous in that they do nothing
to correct the fundamental PAP.

3. POWER ANALYSIS VERSUS CONFIDENCE
INTERVALS

From a pedagogic point of view, it is interesting to com-
pare the inference one would obtain from consideration of
con� dence intervals to that obtained from the power anal-
ysis approach. Con� dence intervals have at least two inter-
pretations. One interpretation is based on the equivalence
of con� dence intervals and hypothesis tests. That is, if a
con� dence interval does not cover a hypothesized param-
eter value, then the value is refuted by the observed data.
Conversely, all values covered by the con� dence interval
could not be rejected; we refer to these as the set of non-
refuted values. If the nonrefuted states are clustered tightly
about a speci� c null value, one has con� dence that nature
is near the null value. If the nonrefuted states range widely
from the null, one must obviously be cautious about inter-
preting the nonrejection as an indication of a “near-null”
state. The more widely known interpretation is that con� -
dence intervals cover the true value with some � xed level of
probability. Using either interpretation, the breadth of the
interval tells us how con� dent we can be of the true state
of nature being close to the null.

Once we have constructed a con� dence interval, power
calculations yield no additional insights. It is pointless to
perform power calculations for hypotheses outside of the
con� dence interval because the data have already told us
that these are unlikely values. What about values inside the
con� dence interval? We already know that these are values
that are not refuted by the data. It would be a mistake to
conclude that the data refute any value within the con� -
dence interval. However, there can be values within a 95%
con� dence interval that yield computed powers of nearly
.975. Thus, it would be a mistake to interpret a value asso-
ciated with high power as representing some type of upper
bound on the plausible size of the true e¡ect, at least in
any straightforward sense. The proposition that computed
power for e¡ect sizes within a con� dence interval can be
very high can be demonstrated as follows. Consider the case
where the random variable X has a normal distribution. We
wish to test the null hypothesis that the mean is zero ver-
sus the alternative that it is not zero. A random sample of
large size is taken which has a mean, x, of 2 and a standard
error of the mean of 1.0255. The upper critical region for
a two-sided Z test then corresponds to values of the mean
greater than 1.96 × 1.0255 = 2.01. Therefore, we fail to re-
ject the null hypothesis. A 95% con� dence interval would
be ( ¡ .01; 4.01). We note that a value of 4 for the popula-
tion mean is not refuted by the data. Now post-hoc power
calculation indicates the probability of rejecting the null
hypothesis if the mean is actually 4 is Pr(jX j > 2.01) =
Pr(Z > (2.01 ¡ 4)=1.0255) + Pr(Z < ( ¡ 2.01 ¡ 4)=1.0255)
which is about .974. Thus, the power calculation suggests
that a value of 4 for the mean is unlikely—otherwise we
ought to have rejected the null hypothesis. This contradicts
the standard theory of hypothesis tests.

4. EQUIVALENCE TESTING

Simply saying that an experiment demonstrates that a
treatment is “near-null” because the con� dence interval
is narrow about the null value may seem unsatisfactorily
“seat-of-the-pants.” However, this can be formulated as a
rigorous test. Suppose that we are willing to conclude that
a treatment is negligible if its absolute e¡ect is no greater
than some small positive value . Demonstrating such prac-
tical equivalence requires reversing the traditional burden
of proof; it is not su cient to simply fail to show a dif-
ference, one must be fairly certain that a large di¡erence
does not exist. Thus, in contrast to the traditional casting
of the null hypothesis, the null hypothesis becomes that a
treatment has a large e¡ect, or H0 : jDj ¶ , where D is
the actual treatment e¡ect. The alternative hypothesis is the
hypothesis of practical equivalence, or HA : jDj < .

Schuirmann (1987) showed that if a 1 ¡ 2 ¬ con� dence
interval lies entirely between ¡ and , we can reject the
null hypothesis of nonequivalence in favor of equivalence
at the ¬ level. The equivalence test is at the ¬ level because
it involves two one-tailed ¬ level tests, which together de-
scribe a 1 ¡ 2 ¬ level con� dence interval. This approach to
equivalence testing is actually always a bit on the conser-
vative side; the actual level ¬ 0 for normally distributed data
from a one-sample experiment with known ¼ and nominal
level ¬ is ¬ 0 = ¬ ¡ 1+ © (2

p
n=¼ ¡ Z ¬ ), which shows the

conservatism will be slight in many practical applications
where 2

p
n=¼ substantially exceeds Z¬ . More powerful

equivalence testing procedures exist (e.g., Berger and Hsu
1996), but for well-behaved problems with simple struc-
tures the simplicity of this approach seems to make it a
compelling choice to recommend to the researcher involved
in analysis (Hauck and Anderson 1996).

Considering the power approach as a formal test in the
above equivalence testing framework makes it clear why
it is logically doomed. The power approach requires two
outcomes before declaring equivalence, which are (1) the
null hypothesis of no di¡erence H0 : D = 0 cannot be re-
jected, and (2) some predetermined level of power must be
achieved for jDj = . To achieve outcome 1, the absolute
value of the observed test statistic must be less than Z¬ .
This in turn implies that the observed absolute di¡erence
jdj must be less than Za ¼ =

p
n. Thus, as jDj becomes more

precisely estimated by increasing n or decreasing ¼ , the ob-
served di¡erence jdj must become progressively smaller if
we want to demonstrate equivalence. This simply does not
make sense: it should become easier, not more di cult, to
conclude equivalence as jDj becomes better characterized.
Schuirmann (1987) noted that when viewed as a formal test
of equivalence, the power approach results in a critical re-
gion that is essentially upside down from what a reasonable
equivalence test should have.

5. DISCUSSION

Because of the prominence of post-hoc power calcula-
tions for data analysis in the literature, elementary statis-
tics texts should devote some attention to explaining what
should not be done. However, there is a larger lesson to be
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learned from the confusion about power analysis. We be-
lieve the central focus of good data analysis should be to
� nd which parameter values are supported by the data and
which are not. Perhaps unwittingly, advocates of post-hoc
power analysis are seemingly grappling with exactly this
question.

The reader with Bayesian inclinations would probably
think “what foolishness—the whole issue would be moot if
people just focused on the sensible task of obtaining poste-
rior distributions.” Philosophically, we � nd this attractive as
it avoids some nagging issues in frequentist statistics con-
cerning p values and con� dence intervals (e.g., Berry 1993;
Freeman 1993; Schervish 1996; Goodman 1999a,b). But,
the real world of data analysis is for the most part solidly
frequentist and will remain so into the foreseeable future.
Within the limitations of the frequentist framework, it is
important that analyses be as appropriate as possible.

Introductory statistics classes can focus on characteriz-
ing which parameter values are supported by the data by
emphasizing con� dence intervals more and placing less em-
phasis on hypothesis testing. One might argue that a rigor-
ous understanding of con� dence intervals requires a rigor-
ous understanding of hypothesis testing and p values. We
feel that researchers often do not need a rigorous under-
standing of con� dence intervals to use them to good ad-
vantage. Although we cannot demonstrate it formally, we
suspect that imperfectly understood con� dence intervals are
more useful and less dangerous than imperfectly under-
stood p values and hypothesis tests. For example, it is surely
prevalent that researchers interpret con� dence intervals as
if they were Bayesian credibility regions; to what extent
does this lead to serious practical problems? The indirect
logic of frequentist hypothesis testing is simply nonintuitive
and hard for most people to understand (Berry 1993; Free-
man 1993; Goodman 1999a,b). If informally motivated con-
� dence intervals lead to better science than rigorously mo-
tivated hypothesis testing, then perhaps the rigor normally
presented to students destined to be applied researchers can
be sacri� ced.

Of course, researchers must be exposed to hypothesis
tests and p values in their statistical education if for no
other reason than so they are able to read their literatures.
However, more emphasis should be placed on general prin-
ciples and less emphasis on mechanics. Typically, almost
no attention is given to why a particular null hypothesis
is chosen and there is virtually no consideration of other
options. As Hauck and Anderson (1996) noted, both statis-
ticians and nonstatisticians often test the wrong hypothesis
because they are so conditioned to test null hypotheses of
no di¡erence. Statisticians need to be careful not to present
statistical analysis as a rote process. Introductory statistics
students frequently ask the question, “why focus on pro-
tection against erroneously rejecting a true null of no dif-
ference?” The stock answer is often something like “it is
bad for science to conclude a di¡erence exists when it does
not.” This is not su cient. In matters of public health and
regulation, it is often more important to be protected against
erroneously concluding no di¡erence exists when one does.

In any particular analysis, one needs to ask whether it is
more appropriate to use the no di¡erence null hypothesis
rather than the nonequivalence null hypothesis. This is a
question that regulators, researchers, and statisticians need
to be asked and be asking constantly. We doubt whether
many researchers are even aware that they have choices
with respect to the null hypotheses they test and that the
choices re� ect where the burden of proof is placed.

We would not entirely rule out the use of power-type con-
cepts in data analysis, but their application is extremely lim-
ited. One potential application might be to examine whether
several experiments were similar, except for sample size;
this might be an issue for example in meta-analyses (Hung,
O’Neill, Bauer, and Kohne 1997). The goal here, examin-
ing homogeneity, di¡ers from the usual motivations for post
hoc power considerations.

Power calculations tell us how well we might be able to
characterize nature in the future given a particular state and
statistical study design, but they cannot use information in
the data to tell us about the likely states of nature. With
traditional frequentist statistics, this is best achieved with
con� dence intervals, appropriate choices of null hypotheses,
and equivalence testing. Confusion about these issues could
be reduced if introductory statistics classes for researchers
placed more emphasis on these concepts and less emphasis
on hypothesis testing.

[Received July 2000. Revised September 2000.]
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