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Introducing the dataset
We will analyse the ChickWeight dataset, which appears in R’s memory. We obtain the data with this
command:
data("ChickWeight")

Let’s look at the first 30 lines of code to get a sense of what the data look like:
ChickWeight[1:30,]

## weight Time Chick Diet
## 1 42 0 1 1
## 2 51 2 1 1
## 3 59 4 1 1
## 4 64 6 1 1
## 5 76 8 1 1
## 6 93 10 1 1
## 7 106 12 1 1
## 8 125 14 1 1
## 9 149 16 1 1
## 10 171 18 1 1
## 11 199 20 1 1
## 12 205 21 1 1
## 13 40 0 2 1
## 14 49 2 2 1
## 15 58 4 2 1
## 16 72 6 2 1
## 17 84 8 2 1
## 18 103 10 2 1
## 19 122 12 2 1
## 20 138 14 2 1
## 21 162 16 2 1
## 22 187 18 2 1
## 23 209 20 2 1
## 24 215 21 2 1
## 25 43 0 3 1
## 26 39 2 3 1
## 27 55 4 3 1
## 28 67 6 3 1
## 29 84 8 3 1
## 30 99 10 3 1

We see four columns: weight, Time, Chick, Diet.
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Stage 1: Determining the appropriate analysis.
Before we begin an analysis, we must consider the experimental design to determine an appropriate approach.
The ChickWeight data come from an experiment that examined the effect of four diets (1-4; see column
Diet) upon the weight of chicks (see column weight). Examine the columns Time, Chick and Diet. Notice
that each chick only experienced one diet, but each chick was also measured over a series of times (Time).

Notice that the experiment only has one general type of experimental manipulation (Diet) with 4 levels
(Diets 1 to 4). Also, the measurements are on a continuous scale. These two facts suggest that we could
analyse the data with a 1-Factor GLM. However, before we proceed we need to ensure that the data meet
two essential assumptions of a 1-Factor GLM:

• Subjects are assigned randomly to treatments;
• Data within treatments (level of Diet, in our case) are independent.

Without knowing more about the experiment, we can’t say whether the data meet the assumption of random
assignment; we’ll assume they were randomly assigned, for the sake of this learning exercise.

However, it is clear that the data do not meet the assumption of independence: individual subjects are
measured multiple times within a type of treatment (i.e., within a level of Diet). This means that we cannot
analyze the entire dataset with a 1-Factor GLM; instead, we’d use an approach like a mixed effects model.
However, we’ve not yet learned mixed effects models. Therefore, to obtain a dataset appropriate for 1-Factor
GLM, we will extract data for the last timepoint for each chick, which occurs at Time 21:
ch21 <- ChickWeight[which(ChickWeight$Time == 21),]

Now, let’s look at the whole dataset, which we’ve renamed ch21 (for ChickWeight at time 21):
ch21

## weight Time Chick Diet
## 12 205 21 1 1
## 24 215 21 2 1
## 36 202 21 3 1
## 48 157 21 4 1
## 60 223 21 5 1
## 72 157 21 6 1
## 84 305 21 7 1
## 107 98 21 9 1
## 119 124 21 10 1
## 131 175 21 11 1
## 143 205 21 12 1
## 155 96 21 13 1
## 167 266 21 14 1
## 194 142 21 17 1
## 208 157 21 19 1
## 220 117 21 20 1
## 232 331 21 21 2
## 244 167 21 22 2
## 256 175 21 23 2
## 268 74 21 24 2
## 280 265 21 25 2
## 292 251 21 26 2
## 304 192 21 27 2
## 316 233 21 28 2
## 328 309 21 29 2
## 340 150 21 30 2
## 352 256 21 31 3
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## 364 305 21 32 3
## 376 147 21 33 3
## 388 341 21 34 3
## 400 373 21 35 3
## 412 220 21 36 3
## 424 178 21 37 3
## 436 290 21 38 3
## 448 272 21 39 3
## 460 321 21 40 3
## 472 204 21 41 4
## 484 281 21 42 4
## 496 200 21 43 4
## 518 196 21 45 4
## 530 238 21 46 4
## 542 205 21 47 4
## 554 322 21 48 4
## 566 237 21 49 4
## 578 264 21 50 4

Notice that now the data are all independent, so far as we can tell (i.e., given that we don’t know all details
for this experiment). Now, our data are appropriate for a 1-Factor GLM and we can proceed.

Stage 2: Plot the data
It is important to begin an analysis by plotting your data. We do this with several goals in mind:

• Obtain a preliminary sense of whether the data will meet the assumption of normally distributed
residuals;

• Obtain a preliminary sense of whether the data will meet the assumption of equal variance;
• Check for outliers;
• Make predictions with respect to differences between groups.

We will check each of these predictions at a later stage in our analysis, below. You might ask yourself, “If
we’re going to check these predictions later, why make the predictions in the first place?” Excellent question!
We make these predictions early on as a ‘validation’ for results we obtain, below. If results we obtain later
do not match our predictions then either: 1) our predictions were wrong, or 2) we made a mistake in our
analysis. Therefore, if our predictions to not match our later findings, it behoves us to determine why.

We have a big decision to make before plotting the data: which data will go on the x-axis and y-axis?
Traditionally, the x-axis displays the variable that we hypothesize to cause a change in the variable plotted
along the y-axis. The ChickWeight experiment presumably was conducted to determine whether Diet
affects weight (this was the hypothesis being tested). Therefore, we would plot Diet along the x-axis and
weight along the y-axis. As another way of saying this, we refer to weight as the dependent variable and
Diet as the independent variable because we hypothesize that weight depends on Diet. We will use this
terminology a lot, so it is important to get used to it.

To plot weight as a dependent (y-) variable and Diet as the independent (x-) variable in a boxplot, we
use this command: boxplot(weight ~ Diet, data=ch21). When we call this command, we’re telling R
to obtain the data found in the column weight of the dataframe, ch21, and use those data for the y-axis;
likewise for obtaining data in the column Diet in ch21 for the x-axis.

Here is code to plot the boxplot as well as individual values:
boxplot(weight ~ Diet, data=ch21)
stripchart(weight ~ Diet, data=ch21, vertical = TRUE, method = "jitter", pch = 21,

col = "maroon", bg = "bisque", add = TRUE)
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What do we see? Let’s assess our 4 criteria, above:

• Notice that the boxplots are roughly symmetrical around the median (dark, horizontal line); this implies
that we expect the data will be (at least roughly) normally distributed. Note that this, casual, check of
normality is not sufficient to be sure our data meet assumptions: we still need to check our assumptions,
below.

• Notice that the spread of the data is generally similar among the levels of Diet; we predict that the
assumption of equal variance will be met. If we find any evidence of unequal variance, we predict that
it will arise from Diet 4, for which the data are slightly less variable (but they still look fine). Again,
we must still perform a proper test of assumptions (i.e., examine residuals) to be certain.

• We see no evidence for outliers.
• We will predict differences between Diet 1 vs., Diet 2, 3 and 4. Based on this plot, I’d guess the the

mean for Diet 1 equal 175. I’d similarly guess that the mean values for Diet 2, 3 and 4 equal 210, 275,
and 250, respectively. Therefore, I would predict that the difference between Diets 1 & 2 equals 210 -
175 = 35, 1 & 3 equals 275 - 175 = 100, and 1 & 4 equals 250 - 175 = 75. Note that the biggest
difference lies between Diet types 1 and 3; therefore, if we find evidence for a difference among
levels of Diet, we expect it to occur here.

With these predictions in mind, we’ll proceed with our analysis.

Stage 3: Formulating a model, checking assumptions, and checking overall result
We’ll analyze the data with a 1-Factor GLM by implementing the function, lm(). We use lm() in the same
way as we used boxplot(): we specify our dependent variable, then add a ‘tilda’ (i.e., ~), then we specify
the independent variable, and specify where R can find these variables (i.e., data = ch21).

One important note before we proceed. Recent versions of R require that we tell a function when we want it
to use a variable as a ‘factor’. In our example, we want the information in the column, Diet to be considered
as 4 categories, not as 4 ‘numbers’. To ensure that the lm() function correctly interprets the content of
the column, Diet, (i.e., to treat it as a factor) we place the column name in the function, factor(), which
converts the object passed to it to a factor. Note that, with recent versions of R, we should do this
even if the data in the column we wish to treat as a factor are not numeric (e.g., even if the
data contain letters of the alphabet).

Here’s our model:
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ch21.lm <- lm(weight ~ factor(Diet), data=ch21)

Notice that I saved the output in an object I called ch21.lm. I like this nomenclature because it helps me
remember where I have saved various output, and this helps keep me organized. In my choice of the name,
ch21.lm, the ch21 refers to the dataset, and .lm indicates that this object contains the output from the
lm() function. Please adopt this approach to keeping track of your work if you think it is helpful; if you find
another way that works better for you then please use it! The important thing is to try to stay organized.

Our first task is to check the assumptions. Recall that the assumptions for 1-Factor GLM include:

• Random allocation to treatments;
• Independence within treatment-levels;
• Equal variance;
• Normally distributed residuals.

Based on our discussion, earlier, we’re happy with the first two assumptions. We check the latter two by
visualizing the residuals. We do this with the plot() function, where we plot the output from our model:
plot(ch21.lm)
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We notice:

• The first plot displays the Residuals (y-axis) vs. the Fitted values. This plot allows us to check the
assumption of equal variance. We see four columns of residuals, which correspond to residuals from the
four levels of Diet; the placement of the residuals along the x-axis corresponds to the mean value of the
treatment from which they came. Notice (1) that the ‘spread’ of the residuals is very similar
among the four treatments; the residuals are slightly closer together for Diet 4 (at about 240 along
the x-axis; notice that this mean is close to our prediction from the boxplot), but this is not a worry.
Also, (2) the red line is relatively horizontal. Both observations suggest that the data meet the
assumption of equal variance.

• The second plot (a ‘qq plot’) allows us to test the assumption of normally distributed residuals. Here,
the points fall beautifully along the dotted line. This implies that the residuals are normally
distributed.

• The third plot presents Standardized residuals along the y-axis, and Fitted values along the x-axis.
Like the first plot, this one allows us to test the assumption of equal variance. However, this plot
presents the residuals on a scale that allows us to check this assumption more reliably. Therefore, this
plot is considered better than the first to check the assumption of equal variance. Here, we check (1)
whether the residuals for each treatment are roughly centered on the red line. This is true
for 3 of the 4 levels of Diet; the residuals for Diet 4 (at about 240 along the x-axis) are not terribly
well centered, but overall this looks OK; (2) whether the red line is horizontal. This red line is
relatively horizontal, so we’re happy that the data meet the assumption of eaual variance.

• The final plot allows us to check for outliers. We will generally ignore this last plot because we have
already checked for outliers in our boxplot, above. This final plot is most useful for other types of
GLM, e.g., where we have multiple, continuous independent variables (i.e., what used to be called
‘multiple regression’). We will use this plot in future analyses where it is helpful.

Now that we’re satisfied our data meet the assumptions we can check our results. We’ll examine our results
from two perspectives, using the functions, summary() and anova().

Let’s start by looking at a summary of the output from lm():
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summary(ch21.lm)

##
## Call:
## lm(formula = weight ~ factor(Diet), data = ch21)
##
## Residuals:
## Min 1Q Median 3Q Max
## -140.700 -39.700 -1.556 37.250 127.250
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 177.75 16.00 11.113 6.07e-14 ***
## factor(Diet)2 36.95 25.79 1.433 0.15955
## factor(Diet)3 92.55 25.79 3.588 0.00088 ***
## factor(Diet)4 60.81 26.66 2.281 0.02782 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 63.98 on 41 degrees of freedom
## Multiple R-squared: 0.2541, Adjusted R-squared: 0.1995
## F-statistic: 4.655 on 3 and 41 DF, p-value: 0.006858

Notice that we obtain lots of output. At the top, we find a summary of our model; just below we find a
description of the distribution of residuals; below again, we find a summary of the Coefficients, and at the
bottom we find an assortment of information. We’ll focus on the output in Coefficients.

Examine the four rows of output in the Coefficients section. We notice that the first row is called,
(Intercept), and the second through fourth rows are called, factor(Diet)2, factor(Diet)3, and
factor(Diet)4. The latter three rows obviously refer to Diet levels 2, 3 and 4, but what happened for
Diet 1? The lm() function selects one level of a factor to act as a reference, against which the other levels
are compared; this reference is termed the (Intercept). R selects this reference level ((Intercept)) in
alpha-numeric order (i.e., it selects that level that comes first either numerically or alphabetically). Therefore,
we infer that R has selected Diet 1 as the (Intercept).

Now that we understand that the (Intercept) refers to data from Diet level 1, let’s look more closely at
the output for this row. First, we see an entry in the column, Estimate: This entry (177.75) equals the
mean value (or the ‘fitted value’) for Diet 1. Notice that it closely matches our guess, above, of 175. (Good
guessing!) Next, we see the value, 16.00, in the column Std Error. This value equals the standard error (SE)
for the mean presented in the column, Estimate (177.75). In other words, this first row provides the mean
and SE for the Diet 1. Next, we see the columns t value and Pr(>|t|). These columns provide a test of
whether the value in the Estimate column differs from the value, zero. We see that the p-value is very small.
However, this is not interesting in the least: the small p-value implies that we have strong evidence that the
mean weight in Diet 1 differs from zero. Given that a chick must have some non-zero mass to exist in our
universe, it comes as no surprise that we have strong evidence that the mean weight in Diet 1 differs from
zero!

The output in the next three rows differs qualitatively from the output in the first ((Intercept)) row. Let’s
focus on the output in the second row (factor(Diet)2). Here, Estimate refers to the difference between
the mean value for Diet 2 vs. the (Intercept)(i.e., vs. Diet 1). Notice that this value is positive 36.95:
this means that the mean value for Diet 2 is 36.95 units larger than the mean value of Diet 1. (Note that
this value, 36.95, is very close to our predicted difference of 35, made from examining output from boxplot();
very reassuring.) Alternatively, we can think of ‘36.95’ as the value we need to add to the (Intercept)
(i.e., the mean of Diet 1) in order to obtain the mean for Diet 2; i.e., the mean of Diet 2 is 177.75 +
36.96 = 214.71. Note that the difference between the mean of Diet 2 and the mean of Diet 1
represents the effect size on mean weight for shifting between these two diets. Also note that, if
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the difference between Diet 2 and Diet 1 had been negative, this would imply that the mean of Diet 2 was
less than that of Diet 1 and we would subtract a value from the mean of Diet 1 to obtain the mean for
Diet 2.

Given that the value in the Estimate column for the row, factor(Diet)2, provided the difference between
the (Intercept) (Diet 1) and Diet 2 (i.e., the effect size for switching between these two types of Diet),
what do you think the value in the column, Std. Error represents? This value (25.79) represents the
standard error (SE) for the estimate of the difference (i.e., effect size) between these two averages. This
effect size, and its SE, can be reported in your Results.

Finally, consider the entries in columns, t value and Pr(>|t|), for our same row (factor(Diet)2). These
entries are used to test whether the value in Estimate in this row (36.96, in this case) is likely different from
zero. In other words, they provide evidence to judge whether we think there’s a difference between the mean
of Diet 1 (the (Intercept)) and Diet 2. Here, the p-value (0.15955) is pretty large, so we conclude that we
have weak evidence for a difference between the mean values for these two types of Diet. We will re-visit
this p-value when we conduct a post-hoc test, below.

The information in the third and fourth rows are interpreted similarly as we did for the second row, however
their output refers to differences between Diet 1 (the (Intercept)) and Diet 3 (third row) and Diet 4
(fourth row). Notice that these differences generally match our predictions of 100 and 75, made using the
output from boxplot(); this is reassuring. Also, as predicted from our boxplot, the p-value in the third row
provides strong evidence for a difference between the mean values of Diet 1 and Diet 3.

Now that we have thoroughly discussed the Coefficients, let’s look at the last row of this output. Here
we find the F-statistic (4.655), degrees of freedom (DF) (3 and 41), and an overall p-value (0.006858).
These values pertain to an overall test of whether mean values of weight differ between levels of Diet.
Note that the p-value is around 0.005; in lecture (videos), I have suggested that p-values of this magnitude
constitute ‘strong’ or ‘substantial’ evidence for an effect of Diet upon weight. However, this p-value does
not indicate which levels of Diet likely differ from which; we will perform a post-hoc test, below, to obtain
evidence for differences in weight among levels of Diet. Note that you would report all values on this
line of output (F-statistic: 4.655 on 3 and 41 DF, p-value: 0.006858) in your Results.

Far above, we said we’d examine our results from two perspectives. We’ve examine results using summary()
and now we will examine results using anova():
anova(ch21.lm)

## Analysis of Variance Table
##
## Response: weight
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(Diet) 3 57164 19054.7 4.6547 0.006858 **
## Residuals 41 167839 4093.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The function, anova() is multi-purpose; i.e., it will do different things, depending on what kind of object(s)
you provide the function. Here, we provided the output from our model using lm() and anova() provides an
ANOVA table for these results.

Compare the output from summary(ch21.lm) to that from anova(ch21.lm). Notice that the p-values are
identical, as are the F-values and degrees of freedom. From the output of anova() we obtain values for the
Sum of Squares (Sum Sq) and Mean Square (Mean Sq) for between-group variation (row with factor(Diet))
and within-group variation (row with Residuals). These values summarize the calculations used to obtain
the F value: we obtain the Mean Sq for each row by dividing the Sum Sq by Df, and we obtain the F value
by dividing the Mean Sq for among-group variation by the Mean Sq for within-group variation. The value of
F and the Df collectively determine the p-value (Pr(>F)). Please see the video lectures for discussion of how
Sum Sq and Df are calculated.
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OK, we’re making progress! We’ve determined that we have strong evidence for an effect of Diet on weight,
and we need to conduct a post-hoc test to understand this result further. We’ll do that in a moment. First, I
want to highlight one other bit of output from ch21.lm. We can extract the estimate of the residual (i.e.,
within-group) variation, expressed as a standard deviation. We do this like:
sigma(ch21.lm)

## [1] 63.98159

I want to note two things:

• We find this same value (63.98) in the output from summary(ch21.lm), described as Residual standard
error. This is an unfortunate term in summary(ch21.lm) because the value, 63.98, is not a standard
error! This value (63.98) equals the standard deviation for the residual (i.e., within-group) variation.

• We can use this value when we perform a power-analysis. Power analyses require an estimate of residual
variation, and we can use this value for this purpose (if we wanted to perform a power analysis.)

Stage 4: Obtaining evidence for differences between groups via post-hoc test
(Tukey test)
Our next step is to further understand differences in weight among levels of Diet. We will use three functions
from the library, emmeans, for our analyses. If you do not have this library installed, you can install it with
install.packages("emmeans").

We begin by opening the library:
library(emmeans)

Our post-hoc test will involve three steps (and three functions!). First, we will calculate the mean values for
each group that we want to compare. Second, we will compare the mean values among levels of Diet; this
will provide estimates of effect size, SE’s for the effect sizes, and p-values for the comparisons among means.
Third, we will further characterize the effect sizes by calculating their 95% Confidence Intervals.

Let’s begin by calculating the mean values for each level of Diet:
ch21.emmeans <- emmeans(ch21.lm,"Diet")

What is happening here? We provided the function, emmeans() (found in the emmeans library) with two bits
of input: ch21.lm, which contains the output from our model, and the name of the factor in our model
for which we wish to obtain mean values (Diet). Note that emmeans works with the model output
for its calculations, not the original dataset (ch21). We stored the output of emmeans in the object,
ch21.emmeans (we continue to use our useful nomenclature). Let’s look at the output from emmeans:
ch21.emmeans

## Diet emmean SE df lower.CL upper.CL
## 1 178 16.0 41 145 210
## 2 215 20.2 41 174 256
## 3 270 20.2 41 229 311
## 4 239 21.3 41 195 282
##
## Confidence level used: 0.95

This output is extremely useful. Here, we find the mean value for each group, along with SE’s and
95% CI’s for each mean; we should report these values in our Results. Compare these mean values
to those we calculated using the Coefficients in the output of summary(ch21.lm), above. You should see
that they match (we did the calculations for Diet1 and Diet 2). Also notice that the SE for the mean of
Diet 1 is the same as in summary(ch21.lm) (recall that mean for Diet 1 was termed the (Intercept) in
the output of summary(ch21.lm), above). It is comforting that these value match.
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Now notice something perhaps unexpected in the output: the SE values for the means of Diet 2 & 3 are
identical (20.2), whereas the distributions of these data are not identical in our boxplot - i.e., based on the
boxplot, we expect the standard deviation to differ between Diet 2 and Diet 3, and therefore expect the
SE’s for their means to differ, too. What’s going on? Recall that emmeans uses the model output, not the
original data, for calculations. When emmeans calculates a standard error it uses the standard deviation
of the residuals from the model to calculate SE (remember SE = sd / sqrt(n)). (This approach makes
sense because our analyses assumes that variance is equal among groups.) We obtained this value of sd using
sigma(ch21.lm), above, which equaled 63.98159. Given that sd is the same for all levels of Diet, we will
obtain the same SE for levels that have the same sample size. As it turns out, the sample sizes for Diet 1
to 4 equal 16, 10, 10, and 9. Therefore, the SE is the same for the means of Diet 2 & 3 because they have
the same sample size (10). In fact, let’s do the calculation: 63.98159 / sqrt(10) = 20.23276, which is
what we obtain from emmeans. Finally, note that the SE of Diet 1 and 4 are smaller and larger than this,
respectively, because their sample sizes are larger and smaller, respectively (sample size of Diet 1 is 16;
sample size of Diet 4 is 9).

Now that we have calculated these mean values and their SE’s, we’ll compare them using the pairs()
function (also in the emmeans library):
ch21.pairs <- pairs(ch21.emmeans)

Notice that, to run pairs, we simply provide it the output from the emmeans function. We also stored the
output in a sensibly-named object (ch21.pairs).

Let’s look at the output:
ch21.pairs

## contrast estimate SE df t.ratio p.value
## 1 - 2 -37.0 25.8 41 -1.433 0.4868
## 1 - 3 -92.5 25.8 41 -3.588 0.0047
## 1 - 4 -60.8 26.7 41 -2.281 0.1193
## 2 - 3 -55.6 28.6 41 -1.943 0.2264
## 2 - 4 -23.9 29.4 41 -0.811 0.8487
## 3 - 4 31.7 29.4 41 1.080 0.7036
##
## P value adjustment: tukey method for comparing a family of 4 estimates

We will discuss several columns from this output:

• The column, contrast, indicates which levels of Diet being compared. For example, the first row
provides information for the comparison between the means of Diet 1 vs. Diet 2. Notice that it shows
1 - 2, which indicates that the difference between these two means is calculated by subtracting the
mean of Diet 2 from the mean of Diet 1. Recall that the mean of Diet 2 was greater than the mean
of Diet 1; therefore we expect this difference (1 - 2) to be negative.

• The column, estimate provides the effect size for each comparison between levels of Diet. This is
calculated as described, immediately above, when we discussed the contrast column. For example,
notice that, as expected, the difference between the mean of Diet 1 and Diet 2 is negative. Also
notice that we have seen this value before (although it was positive when we first saw it because it was
calculated differently). We found the same value in the output of summary(ch21.lm), above (reported
as 36.95). Hence, once again, we find output that matches the output from summary(ch21.lm) (and our
prediction from observing the boxplot). The major difference from the output of summary(ch21.lm) is
that the output from pairs(ch21.emmeans) provides more combinations of comparisons among levels
of Diet. We will report the effect sizes in the column estimate in our Results.

• The column SE provides the standard error for the effect sizes displayed in the previous column,
estimate. We will also report these SE’s of the effect sizes. Notice, once again, that these SE’s
match the output from summary(ch21.lm).

• the column df provides the degrees of freedom used to make the comparison between the two mean
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values. It is a good idea to report the df in Results.
• The column t.ratio provides the test-statistic for the comparison between the means listed in the

column, contrast. These values have the same meaning as the values in the column t.value in the
output of summary(ch21.lm), and, once again, they match between the outputs. It is a good idea
to report the t.ratio in Results.

• Finally, the column p.value provides the p-value for the comparison between the mean values indicated
in the column contrast. Notice, however, that this time the p-values from the output of pairs()
do NOT match the p-values in the output of summary(ch21.lm). Why is this? We find the
answer at the very bottom of our output: P value adjustment: tukey method for comparing a
family of 4 estimates. This comment tells us that pairs() altered the p-values using the tukey
method (i.e., we used a Tukey test). It did this for an important reason: the p-values were altered in
a way that maintains a Type 1 error rate of 5%; i.e., it accounted for our making multiple
comparisons. Notice that the p-values are larger in the output from pairs() than they were in the
output of summary(ch21.lm). For example, the p-value for the difference between the means of Diet
1 and Diet 2 equaled 0.15955 in the output of summary(ch21.lm), but was greater (0.4868) in the
output of pairs(). pairs() increased the p-values to make it less likely that we would conclude that a
difference occurs between means, to compensate for the fact that we’ve performed multiple comparisons.

Overall, what do we conclude here? If we focus on the p-values, we see that we only have strong evidence
for differences between Diet 1 and Diet 3, as the p-value equals 0.0047. All other p-values exceed 0.1, and
therefore provide only weak evidence for differences.

Recall that p-values provide only limited insight into our results. We obtain greater insight from the effect
sizes. We can use the estimate column from pairs() to obtain a mean effect size. However, it is desirable
to obtain 95% confidence intervals for the effect sizes. We do this using the confint() function, where we
provide it the output from pairs():
confint(ch21.pairs)

## contrast estimate SE df lower.CL upper.CL
## 1 - 2 -37.0 25.8 41 -106 32.1
## 1 - 3 -92.5 25.8 41 -162 -23.5
## 1 - 4 -60.8 26.7 41 -132 10.6
## 2 - 3 -55.6 28.6 41 -132 21.0
## 2 - 4 -23.9 29.4 41 -103 54.9
## 3 - 4 31.7 29.4 41 -47 110.5
##
## Confidence level used: 0.95
## Conf-level adjustment: tukey method for comparing a family of 4 estimates

Notice that all of the output here matches the output from pairs(), except we now have 95% CI’s for
the effect sizes, instead of a t.ratio and p-value. Also, note the comment at the base of the output,
which states Conf-level adjustment: tukey method for comparing a family of 4 estimates. This
indicates that the 95% CI’s were adjusted (made larger) for the same reason that the p-values were increased
in the output of pairs().

How might we interpret these 95% CI’s? Let’s use the difference between the means of Diet 1 and Diet 3 as
an example. Here, the 95% CI’s range from -162 to -23.5; again, the values are negative because R subtracted
a big mean (Diet 3) from a small mean (Diet 1). It is more important to notice that both ends of the 95%
CI are the same sign (i.e.; negative); this means that the 95% CI’s do not cross zero, so ‘zero’ is not a very
plausible value for the difference between these means. These 95% CI’s imply that we have good reason to
think (given assumptions of 95% CI’s, as opposed to, say, 99% CI’s) that the mean of Diet 3 is greater than
that for Diet 1 by as little as 23.5 and as great as 162. Is this effect size biologically important? That’s hard
to judge without knowing more about the reasons for performing the experiment. For example, imagine that
Diet 3 costs more than Diet 1: a farmer might only be interested in the difference between Diet 1 and Diet
3 if increase in growth under Diet 3 offsets its additional cost. If the minimum ‘plausible’ increase in weight
in Diet 3 (i.e., lower 95% CI, 23.5) is greater than the amount of increased weight needed to offset the cost,
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farmers may be excited by these results.

It is a good idea to report 95% CI’s for the effect sizes and interpret your results in terms
of the 95% CI’s, as suggested, above. If you report the 95% CI’s reported from confint(),
you should indicate that they have been adjusted (Tukey method) to account for multiple
comparisons.

For practice, let’s consider another example. Consider the contrast in the first row: 1 - 2. Here, the 95%
CI’s range from -106 to 32.1. This implies that, relative to Diet 1, Diet 2 may plausibly increase mean
weight by 106, or decrease in mean weight by 32.1, and anything in-between. (Note that the value 0 lies
between these values, implying that ‘no difference’ is plausible - this explains why the p-value is so large for
this comparison). Our job now would be to interpret these values at the end of the 95% CI’s in terms of their
‘biological’ significance: if Diet 2 increased weight by 106, relative to Diet 1, would this be interesting and
useful to us? We similarly interpret the biological / practical importance if Diet 2 decreased weight by 32.1,
relative to Diet 1. We do not do that, here, because we do not know enough about the background for this
experiment to do so. Remember that these 95% CI’s (-106 to 32.1) are not hard limits; i.e., values lying just
outside the limits (e.g., -107) are also plausible. Also, this range of ‘plausible’ values is contingent upon the
assumptions of 95% CI’s; we would have a wider range of ‘plausible’ values if we considered instead, say, 99%
CI’s.

Stage 5: Reporting your results
Please refer to the (video) analysis of the ChickWeight dataset (by 1-Factor GLM) for guidance to present
your results.

An Important Comment Regarding Multiple Comparisons
Statisticians do not all agree on whether p-values and 95% CI’s for effect sizes should be adjusted to account
for multiple comparisons. We will not discuss the reasons for this debate here. Here is an example where
authors believe that accounting for multiple comparisons is a mistake: Hurlbert, S. H., and Lombardi, C.
M. (2012), “Lopsided Reasoning on Lopsided Tests and Multiple Comparisons,” Australian & New Zealand
Journal of Statistics, 54, 23–42 https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-842X.2012.00652.x.

If, when implementing pairwise comparisons using the emmeans library, you do not wish to correct p-values
for multiple comparisons, you can suppress the p-value adjustment like this:
summary(ch21.pairs, adjust = "none")

## contrast estimate SE df t.ratio p.value
## 1 - 2 -37.0 25.8 41 -1.433 0.1595
## 1 - 3 -92.5 25.8 41 -3.588 0.0009
## 1 - 4 -60.8 26.7 41 -2.281 0.0278
## 2 - 3 -55.6 28.6 41 -1.943 0.0589
## 2 - 4 -23.9 29.4 41 -0.811 0.4218
## 3 - 4 31.7 29.4 41 1.080 0.2865

Notice that 1) these p-values are smaller than those obtained, earlier, when using the pairs() function, and
2) these p-values match the output from summary(ch21.lm).

Similarly, when using the emmeans library, you can obtain 95% CI’s for effect sizes that have not been adjusted
for multiple comparisons like this:
confint(ch21.pairs, adjust = "none")

## contrast estimate SE df lower.CL upper.CL
## 1 - 2 -37.0 25.8 41 -89.0 15.14
## 1 - 3 -92.5 25.8 41 -144.6 -40.46
## 1 - 4 -60.8 26.7 41 -114.6 -6.97
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## 2 - 3 -55.6 28.6 41 -113.4 2.19
## 2 - 4 -23.9 29.4 41 -83.2 35.51
## 3 - 4 31.7 29.4 41 -27.6 91.11
##
## Confidence level used: 0.95

When you report your results, remember to comment upon whether or not values were adjusted for multiple
comparisons.
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