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Abstract High-altitude environments require that animals meet the metabolic O2 demands for
locomotion and thermogenesis in O2-thin air, but the degree to which convergent metabolic
changes have arisen across independent high-altitude lineages or the speed at which such changes
arise is unclear. We examined seven high-altitude waterfowl that have inhabited the Andes (3812–
4806 m elevation) over varying evolutionary time scales, to elucidate changes in biochemical
pathways of energy metabolism in flight muscle relative to low-altitude sister taxa. Convergent
changes across high-altitude taxa included increased hydroxyacyl-coA dehydrogenase and
succinate dehydrogenase activities, decreased lactate dehydrogenase, pyruvate kinase, creatine
kinase, and cytochrome c oxidase activities, and increased myoglobin content. ATP synthase
activity increased in only the longest established high-altitude taxa, whereas hexokinase activity
increased in only newly established taxa. Therefore, changes in pathways of lipid oxidation,
glycolysis, and mitochondrial oxidative phosphorylation are common strategies to cope with high-
altitude hypoxia, but some changes require longer evolutionary time to arise.

Introduction
Given a common set of environmental challenges, evolution often converges upon a phenotype that
maximizes fitness in that environment (i.e., fitness optimum). Many studies have explored the phe-
nomenon of convergent evolution at molecular and biochemical levels by focusing on a single pro-
tein or gene across a broad number of taxa (Storz, 2016; Storz et al., 2010). However, we know
relatively little about convergence of biochemical pathways, or how long convergent adaptations to
an environment may take to evolve. Moreover, when evolution converges upon the same predictable
phenotypes, does this process occur quickly over short evolutionary time scales or does it take lon-
ger durations to evolve?

Birds that have adapted to the challenges of high altitude present a compelling system in which
to explore the convergence of metabolic pathways in response to common environmental chal-
lenges. The cold and hypoxic environment at high altitude requires that endotherms maintain high
rates of O2 consumption for locomotion and thermogenesis in O2-thin air (Bishop et al., 2015;
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Hayes, 1989). Flying birds face the additional challenge of maintaining lift with reductions in air den-
sity, which more than offsets the metabolic savings from reductions in drag, such that birds flying at

high altitude must flap their wings harder and maintain higher metabolic rates to stay aloft
(Bishop et al., 2015). Both evolved and phenotypically plastic changes in respiratory physiology and
metabolism are believed to help mitigate the challenges posed by the cold and hypoxic environment

at high altitude (Beall, 2000; Lague et al., 2017; Monge and León-Velarde, 1991). In the bar-
headed goose (Anser indicus), for example, evolutionary adaptations to high altitude appear to have
arisen throughout the O2 transport pathway, including increases in effective ventilation, vital capacity

and air-sac volume, haemoglobin-O2 affinity, capillarity of the flight muscle and heart, and oxidative
capacity of the flight muscle (Jessen et al., 1991; McCracken et al., 2009a; Natarajan et al., 2015;
Petschow et al., 1977; Scott et al., 2009a; Scott and Milsom, 2006; Scott and Milsom, 2007;

Scott et al., 2011; Weibel, 1984; York et al., 2017; Zhang et al., 1996). However, except for stud-
ies of a few key proteins like hemoglobin (Natarajan et al., 2018; Natarajan et al., 2015; Projecto-
Garcia et al., 2013; Storz et al., 2010), we still know little about whether convergent phenotypic

changes have arisen across independent high-altitude lineages, particularly for the pathways of
energy metabolism that support locomotion and thermogenesis. Metabolic genes have been outliers
in genome scans of selection in high-altitude taxa (Qu et al., 2015), and recent studies in high-alti-

tude populations of mice and humans point towards skeletal muscle as a common target of selection
(Lundby and Calbet, 2016; Scott et al., 2018). However, the extent to which convergent reorgani-
zation of metabolic pathways has occurred across high-altitude taxa to help sustain locomotion and

thermogenesis in hypoxia remains unclear, particularly across species that independently colonized
high altitude in the same geographic region.

The activities of enzymes involved in energy metabolism are important determinants of capacity
and flux of metabolic pathways (Kurata et al., 2007; Madhukar et al., 2015; Vogt et al., 2002a;
Vogt et al., 2002b). Flux capacity is an emergent property of the contributions of several enzymes
in a pathway that is set via hierarchical regulation, which determines the limits of metabolic fluxes

that can be achieved via metabolic regulation (Suarez and Moyes, 2012), and the maximal activities
of key enzymes can be valuable markers of flux capacity. Some previous studies suggest that the
activities of some enzymes in major energy producing pathways differ in high-altitude natives com-

pared to their low-altitude counterparts (Dawson et al., 2016; Leon-Velarde et al., 1993; Reyna-
farje, 1962; Rosser and Hochachka, 1993). However, similar differences in enzymatic activities have
not been observed in other studies of high-altitude natives (Mathieu-Costello, 2001; Scott et al.,

2018), and most previous work has been limited to a small number of enzymes and/or a single or a
handful of species.

Here, we surveyed variation in 13 metabolic enzymes and myoglobin content across seven spe-
cies encompassing four genera of high-altitude waterfowl (Family Anatidae) (Figure 1). Established
markers of key metabolic pathways were chosen to provide a holistic view of energy metabolism
during locomotion and thermogenesis, including aerobic and anaerobic glycolysis, fatty acid oxida-

tion and mitochondrial function. We relied primarily on paired-lineage tests to make comparisons
between high- and low-altitude taxa within a phylogenetic framework (Storz et al., 2010), but we
also complemented these tests with standard ANOVA and phylogenetically independent contrasts

(Felsenstein, 1985; Garland et al., 2005). We uncovered significant patterns of convergence in the
remodeling of energy metabolism pathways in the major locomotor and thermogenic muscle, the
pectoralis, between high- and low-altitude populations (summarized in Figure 1). Furthermore, by

integrating population genetic data to infer how long each species has been established at high alti-
tude, we show that some high-altitude phenotypes arose quickly whereas others required much lon-
ger evolutionary time to arise.

Results and discussion

Diversity in the duration of high-altitude ancestry
We collected muscle samples of birds from a broad range of high-altitude sites in the Andes and
from paired low-altitude sites, from species in the genera Anas (n = 76 specimens), Lophonetta
(n = 21 specimens), Chloephaga (n = 20 specimens) and Oxyura (n = 16 specimens). Our sampling
effort included seven Andean waterfowl species, subspecies, or populations that independently

Dawson et al. eLife 2020;9:e56259. DOI: https://doi.org/10.7554/eLife.56259 2 of 22

Research article Evolutionary Biology



colonized high altitude at different times in geological history, and exhibit a range of divergence

from their corresponding low-altitude population (Figure 2; Table 1). The species include strictly

high-alpine specialists such as Andean goose (C. melanoptera, high-altitude range = 2000–5000 m

above sea level) and puna teal (Anas puna, syn. Spatula puna, 3500–4600 m), which have diverged

sufficiently from their low-altitude counterparts, Magellan goose (C. picta) and silver teal (Anas versi-

color, syn. Spatula versicolor), to be classified as separate species (Fjdelsa and Krabbe, 1990).

More recently diverged high-altitude populations of three dabbling duck species are classified as

distinct subspecies, including crested duck (L. specularioides alticola, high-altitude range = 2000–

5000 m; L. s. specularioides, low-altitude resident), speckled teal (A. flavoristris oxyptera, high-alti-

tude range = 2500–4500 m; A. f. flavirostris, low-altitude resident), and cinnamon teal (Anas cyanop-

tera orinomus, syn. Spatula cyanoptera orinomus, high-altitude range = 2500–5000 m; Anas

cyanoptera, syn. Spatula cyanoptera, low-altitude resident). The yellow-billed pintail (A. georgia spi-

nicauda) has distinct populations occupying high altitude (up to 3500–4600 m) and low altitude, but

they are not considered to be separate subspecies. Finally, we sampled a highly specialized diving

duck that feeds extensively on aquatic insects, the ruddy duck, which has distinct subspecies at high

altitude (O. jamaicensis ferruginea, high-altitude range = 2500–4500 m) and low altitude (O. j.

jamaicensis).

Figure 1. Enzyme pathway diagram illustrating where we observed differences in metabolic enzyme activity and myoglobin content in high-altitude

waterfowl compared to their close low-altitude relatives. In addition to the observed increases in myoglobin content, increases in the activities of

hexokinase, ATP synthase, HOAD, and complex II (succinate dehydrogenase), and decreases in activities of pyruvate kinase, lactate dehydrogenase,

creatine kinase and complex IV (cytochrome c oxidase), we observed no changes in activity for the enzymes citrate synthase, isocitrate dehydrogenase,

malate dehydrogenase, complex I (NADH-ubiquinone oxidoreductase), and adenylate kinase.
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In sum, two taxon pairs represent deeply diverged sister species living at high and low altitude,
four taxon pairs (including the diving duck) represent intermediate divergence between subspecies

within species, and the last pair represents shallow divergence between populations of the same

subspecies (Figure 2, Table 1). To quantify duration of high-altitude ancestry, for each taxon pair we

used previously published sequences from the mitochondrial DNA (mtDNA) control region to calcu-

late population genetic parameters including: (a) the fixation index FST, which measures nucleotide

diversity (p) differences reflecting population subdivision, and (b) time since divergence between

high and low altitude, as measured using a coalescent model incorporating drift and gene flow

(Hey, 2005; Hey and Nielsen, 2004). We thus were able to reconstruct the rank order in time that

these populations separated from each respective ancestral low-altitude population and order them

according to the time they may have first become established in the Andean highlands.

Figure 2. Simplified phylogenetic tree, generated using maximum parsimony and constrained to the same topology as the global waterfowl phylogeny

published by Gonzalez et al., 2009. (see Figure 2—figure supplement 1). Branch lengths are measured as the total number of nucleotide

substitutions in the 5’ end of the mtDNA control region.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Phylogeny of the waterfowl based on Gonzalez et al.
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Convergence across multiple pathways of energy metabolism
There were convergent decreases in the activities of multiple glycolytic enzymes (LDH and PK) and

in creatine kinase (CK) across high-altitude taxa (Figure 3). The reductions in CK activity in particular

provided one of the strongest cases for convergent changes in high-altitude waterfowl (>50% reduc-

tion in highland populations in all species). High-altitude taxa exhibited a significant reduction in CK

activity using Wilcoxon signed-rank test (p<0.001; Figure 3). There was also a significant main effect

of altitude (p<0.0001; Supplementary file 1b) using two-factor ANOVA and a negative correlation

between CK activity and altitude using phylogenetically independent contrasts (PICs) (p<0.0001;

Supplementary file 1f). These changes could have been a plastic response to chronic hypoxia, as

observed in humans exposed to high altitude (Levett et al., 2015; Viganò et al., 2008). Since most

of the CK in muscle is cytosolic, reductions in CK activity likely reflect a reduction in cytosolic ATP

buffering capacity and/or a shift towards a more oxidative phenotype. CK is also expressed in mito-

chondria of muscle, where it is specialized for high-energy phosphate transfer as part of the phos-

phocreatine shuttle, a process that could also be impaired if mitochondrial CK activity is reduced in

high-altitude waterfowl. However, the activity of the phosphocreatine shuttle is augmented, not

reduced, in high-altitude bar-headed geese, and mitochondrial CK expression is elevated in high-

altitude deer mice (Lui et al., 2015; Scott et al., 2009b). These results suggest that decreases in CK

activity, along with reductions in LDH and PK activities, may be part of a general strategy to down-

regulate some contributors to substrate-level phosphorylation in the muscle of high-altitude water-

fowl. However, hexokinase (HK) activity was elevated in some of the least established high-altitude

taxa (Figure 3D; Supplementary file 1f), so the decreases in LDH and PK activities are not associ-

ated with general reductions in capacity across glycolysis.
Several high-altitude waterfowl also exhibited increases in HOAD activity (1.2 to 2.2-fold), which

likely increases the capacity for beta-oxidation of fatty acids (Figure 3). HOAD activity was signifi-

cantly elevated in highland taxa using Wilcoxon’s signed-rank test (p<0.001; Figure 3), and there

was a significant main effect of altitude using two-factor ANOVA (p<0.0001; Supplementary file 1b)

and a positive correlation between HOAD activity and altitude using PIC (p=0.0001;

Supplementary file 1g). The peroxisome proliferator-activated receptors (PPAR) are key regulators

of the expression of genes encoding the mitochondrial trifunctional enzyme (the heterooctamer that

catalyzes the HOAD step and two additional steps in beta-oxidation) and other enzymes in beta-oxi-

dation (i.e., acyl-CoA dehydrogenases), as well as genes controlling fatty-acid transport into mito-

chondria (Fan and Evans, 2015), so increases in HOAD activity in the flight muscle could reflect a

general increase in the capacity for lipid oxidation. However, fatty-acid oxidation is strongly regu-

lated by the enzymes involved in mitochondrial lipid uptake (e.g., carnitine palmitoyl transferase),

Table 1. Seven species of Andean ducks showing classification level, FST, time since divergence (t/site), and the approximate time (T)
ago in years they became established at high altitude based on coalescent analysis.
FST and t/site were calculated using previously published mtDNA sequences. T in years was calculated using the substitution rate pub-
lished by Peters et al., 2005 of 4.8 ! 10"8 substitutions/site/year.

Cinnamon teal Yellow-billed pintail Ruddy duck Crested duck
Puna teal (H)
Silver teal (L) Speckled teal

Andean goose (H)
Magellan goose (L)

New New New Intermediate Established Established Established

Subspecies Populations Subspecies Subspecies Species Subspecies Species

FST = 0.07 FST = 0.05 FST = 0.38 FST = 0.85 FST = 0.93 FST = 0.77 FST = 1.0

t/site =
0.000143116

t/site =
0.00052227

t/site =
0.000806087

t/site =
0.003174242

t/site =
0.017886364

t/site =
0.019886364

t/site =
0.04547956

T (years) =
2982

T (years) =
10,898

T (years) =
16,793

T (years) =
66,130

T (years) =
372,633

T (years) =
414,219

T (years) =
947,491

Capture range
HA = 3812 m
LA = 0–13 m

Capture range
HA = 3812 m
LA = 3 m

Capture range
HA = 3812 m
LA = 480–507 m

Capture range
HA = 4281–4655 m
LA = 760–1050 m

Capture range
HA = 3812 m
LA = 410–485 m

Capture range
HA = 4209–4657 m
LA = 760–1050 m

Capture range
HA = 4368–4806 m
LA = 0–27 m

HA (n = 8)
LA (n = 8)

HA (n = 8)
LA (n = 10)

HA (n = 6)
LA (n = 10)

HA (n = 12)
LA (n = 10)

HA (n = 11)
LA (n = 10)

HA (n = 11)
LA (n = 10)

HA (n = 12)
LA (n = 8)
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Figure 3. Metabolic enzyme activities for (A) lactate dehydrogenase (LDH), (B) pyruvate kinase (PK), (C) creatine kinase (CK), (D) hexokinase (HK), and (E)
3-hydroxyacyl-CoA dehydrogenase (HOAD), measured in the pectoralis of high- and low-altitude waterfowl. The diagonal represents the line of equality

(x = y). Values are shown as mean ± SEM U/g tissue (n = 8–12). High-altitude values are significantly different overall from the corresponding low-

altitude values when p<0.05 in Wilcoxon’s Signed-Rank Tests, which were carried out including (*) and excluding (†) ruddy ducks.
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such that changes in fatty acid oxidation can arise without changes in HOAD activity (Morash et al.,

2013). Nevertheless, if increases in HOAD activity are indeed associated with increased capacity for
lipid oxidation in the flight muscle, such changes would amplify the already remarkable capacity of

birds to support high rates of muscle metabolism and power on lipids alone (Guglielmo, 2010;
O’Brien and Suarez, 2001; Suarez et al., 1986). Sustained thermogenesis relies heavily on lipid oxi-

dation (Marsh and Dawson, 1989; Swanson and Thomas, 2007; Vaillancourt et al., 2009;
Vaillancourt et al., 2005), such that cold temperatures could have increased lipid metabolism and

stimulated a corresponding rise in beta-oxidation capacity in high-altitude birds. Furthermore, there
seems to be a positive association between altitude and body lipid content in insects

(Parkash et al., 2008; Sømme et al., 1996), which could increase dietary lipid availability at high alti-
tude for waterfowl (most of which forage on aquatic insects). There is also evidence showing a posi-

tive correlation between dietary lipids and HOAD activity in the pectoralis of both migratory and

non-migratory birds (Guglielmo, 2010; Maillet and Weber, 2007; Nagahuedi et al., 2009). If high-
altitude birds eat more lipid-rich foods than their low-altitude counterparts, then a corresponding

increase in lipid metabolism might have stimulated the rise in beta-oxidation capacity.
There were also convergent changes in complexes II and IV of the electron transport system and

in ATP synthase (F1FO-ATPase, complex V) (Figure 4). The activities of all TCA cycle enzymes

assayed, including citrate synthase, isocitrate dehydrogenase, and malate dehydrogenase, were sim-

ilar between high- and low-altitude populations (Supplementary file 1a). Citrate synthase in particu-
lar is a common marker of mitochondrial volume density in muscle tissue (Boushel et al., 2007;

Dawson et al., 2018; Larsen et al., 2016; Mahalingam et al., 2017; Mogensen et al., 2006), so
this result suggests that muscle mitochondrial content was similar between high- and low-altitude

populations. The observed changes in complexes II, IV, and V activities could therefore reflect a
change in mitochondrial quality affecting the function of a given amount of mitochondria. Complex

II activity was higher in multiple high-altitude species (1.05- to 1.51-fold increases, with no change in
complex I activity; Supplementary file 1a) using Wilcoxon’s signed-rank test (p<0.05; Figure 3), and

there was a significant main effect of altitude using two-factor ANOVA (p=0.0060;
Supplementary file 1b) and a positive correlation between complex II activity and altitude using PIC

(p=0.0213; Supplementary file 1f). ATP synthase activity was also higher in multiple (but not all)

high-altitude taxa using Wilcoxon’s signed-rank test (p<0.05; Figure 4), supported by results of two-
factor ANOVA (altitude effect, p<0.0001; Supplementary file 1b) and the positive correlation

between ATP synthase activity and altitude using PIC (p=0.0009; Supplementary file 1f). In contrast,
the terminal acceptor for oxygen, cytochrome c oxidase (COX; complex IV), had ~50% lower activity

when compared to low-altitude sister taxa across nearly all high-altitude species except the ruddy
duck. In fact, there seemed to be a narrow optimum for the activity of COX across high-altitude

waterfowl, as all species converged on a strikingly similar value (Figure 4B). COX activity showed a
significant reduction in highland taxa using Wilcoxon’s signed-rank test (p<0.05; Figure 3), and there

was a significant main effect of altitude in two-factor ANOVA (p<0.0001; Supplementary file 1b)
and a negative correlation between COX activity and altitude using PIC (p=0.0001;

Supplementary file 1f). Unique specializations in the activity, structure and function of COX have

been observed in the locomotory muscles of several high-altitude taxa (Dawson et al., 2016;
Lui et al., 2015; Scott et al., 2011; Sheafor, 2003). A similar reduction in COX activity (~50% less)

was also observed in the cardiac muscle of bar-headed goose compared to low-altitude geese, in
association with an increased affinity for cytochrome c (Scott et al., 2011). Similarly, COX of some

hypoxia-tolerant fish has decreased activity but a greater affinity for O2 (Lau et al., 2017). Therefore,
hypoxia may drive convergent changes in COX and mitochondrial function across vertebrates.

Several high-altitude waterfowl exhibited elevated myoglobin in the pectoralis muscle when com-
pared to low-altitude ducks. Myoglobin content showed a significant main effect of altitude

(p=0.0077; Supplementary file 1b) using two-factor ANOVA and this effect was nearly significant in
Wilcoxon’s signed-rank test (0.1 > P > 0.05; Figure 5B) and in PIC correlations between myoglobin

content and altitude (p=0.0706; Supplementary file 1g). Myoglobin content was variable across
species and tended to be greatest in ducks with the highest body mass (Supplementary file 1a),

and the effect of body mass was nearly significant (p=0.0585; Supplementary file 1d). Body mass,
however, was not significantly greater in high-altitude waterfowl (p=0.9707; Supplementary file 1b),

suggesting that the elevated levels of myoglobin in some high-altitude taxa is not simply due to
increased body size. Elevated myoglobin content in flight muscle may serve to increase cellular O2
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stores and to facilitate intracellular O2 diffusion (Kanatous et al., 2009; Wittenberg and Witten-

berg, 2003). Elevated myoglobin content could potentially augment intracellular lipid transport as

well, as there are some suggestions that myoglobin may bind and facilitate fatty acid diffusion

through the sarcoplasm (Gros et al., 2010). Elevated myoglobin content or transcript expression has

been previously observed in some other taxa that reside at and/or were acclimatized to high alti-

tude, including torrent ducks (Mergantta armata) (Dawson et al., 2016), dogs (Gimenez et al.,

1977), rats (Vaughan and Pace, 1956), and Tibetan humans (Moore et al., 2002). Therefore, ele-

vated myoglobin levels in the locomotory muscle appear to be an important strategy across high-

altitude taxa for augmenting mitochondrial O2 availability (and possibly intracellular lipid transport)

and thus sustaining thermogenesis and locomotion in hypoxia at high altitude.

Figure 4. Mitochondrial enzyme activities for (A) Complex II, (B) Complex IV, and (C) ATP synthase measured in the pectoralis of high- and low-altitude

waterfowl. The diagonal represents the line of equality (x = y). Values are shown as mean ± SEM U/g tissue (n = 8–12). High-altitude values are

significantly different overall from the corresponding low-altitude values when p<0.05 in Wilcoxon’s Signed-Rank Tests, which were carried out

including (*) and excluding (†) ruddy ducks.
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Idiosyncratic changes in high-altitude ruddy ducks
In many cases, the ruddy duck, the most distantly related and the only diving species studied herein,

showed a contrasting pattern of changes compared to the other species that forage on the surface

of water (dabbling ducks) or graze on land (sheldgeese). Low-altitude ruddy ducks seem to have fun-

damentally different physiological and biochemical characteristics than the other low-altitude taxa in

this study, with relatively high activities of HOAD, complex II, and HK, relatively low activities of

complex IV (Figures 3–6), and a relatively high haemoglobin-O2 affinity atypical of low-altitude pop-

ulations but more similar to high-altitude waterfowl populations (Natarajan et al., 2015). Compared

to this low-altitude relative, high-altitude ruddy ducks had decreased activities of both complex II

and HOAD in the flight muscle, in contrast to most/all other high-altitude taxa in which the activities

of these enzymes were elevated (Figure 3C; Figure 4A), and they also do not show the typical and

expected increase in Hb-O2 affinity that is seen in the other high-altitude waterfowl from this study

system (Natarajan et al., 2015) and in many other high-altitude birds (Storz, 2016). The distinct

direction of the differences between high- and low-altitude ruddy ducks appeared to strongly con-

tribute to the significant species ! altitude interactions that were detected in two-factor ANOVAs

for PK (p=0.0003), HOAD (p<0.0001), complex II (p<0.0001), and complex IV (p<0. 001) activities

(Supplementary file 1b). It is possible that diving created a unique set of physiological challenges

for this species as it invaded high-altitude habitats; however, we do not see similar changes in

enzyme activities in the pectoralis (flight muscle) or gastrocnemius (swimming muscle) of torrent

ducks at high altitude, another diving duck species native to the Andes (Dawson et al., 2016). It is

more likely that the unique features of low-altitude ruddy ducks – related to diet, physiology, bio-

chemistry, etc. – favoured distinct mechanisms of adaptation or plasticity during the process of high-

altitude colonization.

Some metabolic changes arise only after prolonged evolutionary time
at high altitude
One of the clear advantages to these particular high-altitude waterfowl as a study system is the abil-

ity to infer and rank order the evolutionary time these populations have lived at high altitude, and

thus provide insight into metabolic changes that take longer evolutionary times to arise. Using popu-

lation genetic data for the mtDNA control region, we determined that the high-altitude taxa studied

Figure 5. Myoglobin content measured in the pectoralis of high- and low-altitude waterfowl. The diagonal

represents the line of equality (x = y). Values are shown as mean ± SEM mg/g tissue (n = 8–12). High-altitude

values are significantly different overall from the corresponding low-altitude values when p<0.05 in Wilcoxon’s

Signed-Rank Tests, which were carried out including (*) and excluding (†) ruddy ducks.
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here most likely diverged from their low-altitude sister taxa for evolutionary times that differed by as

much as three orders of magnitude, from within the last several thousands of years (i.e., more

recently established high-altitude populations) to approximately a million years in the case of species

that are now established high-altitude endemic species (Table 1). In each case, all available evidence

indicates that high-altitude taxa were derived from low-altitude ancestral populations and not the

reverse (Bulgarella et al., 2014; Bulgarella et al., 2012; Fjeldså, 1985; Graham et al., 2018;

McCracken et al., 2009b; McCracken et al., 2009c; Muñoz-Fuentes et al., 2013; Wilson et al.,

2013). This approach allowed us to broadly classify high-altitude taxa into three groups based on

their mtDNA divergence: newly established highland populations (~3,000–17,000 years; cinnamon

teal, yellow-billed pintail and ruddy duck), intermediate (66,000 years; crested duck), and long estab-

lished subspecies/species (372,000–947,000 years; puna teal, speckled teal, Andean goose) (Table 1).

These time since divergence (T) calculations, while approximations, are derived from t/site (t) values

representing the average tree height of all genealogies in each coalescent analysis divided by the

mutation rate (m), assuming a mutation rate of 4.8 ! 10–8 substitutions per site per year

Figure 6. Changes over evolutionary time at altitude of (A) ATP synthase activity and (C) hexokinase activity measured in thepectoralis of seven high-

and low-altitude waterfowl pairs. Values are given as the mean ± SEM U/g tissue (n = 8–12). * - Significantly different activity in high-altitude ducks

compared to low-altitude ducks (two-factor ANOVA followed by the Bonferroni post-tests; p<0.05). (B) ATP synthase and (D) Hexokinase activities in

each high-altitude taxon plotted against the t/site value between each high-low pair.
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(Peters et al., 2005) as previously applied to these same species. In support of our inferences about
duration of high-altitude ancestry, a very similar rank order is also seen with FST (Table 1), which pro-
vides an independent estimate of divergence not dependent on any particular mutation rate. Using

this rank order, we predicted that some metabolic pathways would only change in the more estab-
lished lineages (i.e., deeper T, higher FST) that have occupied the high-altitude environment for lon-
ger and have therefore experienced hypoxia for longer evolutionary time, therefore with more time
for adaptation to proceed.

Following this classification, ATP synthase activity was elevated in only the most established high-
altitude taxa, whereas no differences were observed in the newly established populations
(Figure 6A,B). The magnitude of these increases in established high-altitude taxa were appreciable,

ranging from 2.0- to 3.1-fold, and they appeared to strongly contribute to the significant
species ! altitude interaction that was detected in two-factor ANOVA (p=0.0342;
Supplementary file 1b). These changes would have led to a strong increase in the capacity for ATP
synthesis relative to electron transport. Such a change could reduce mitochondrial membrane poten-
tial and attenuate the production of reactive oxygen species (ROS), which may be advantageous at

high altitude for reducing oxidative stress (Brand et al., 1999; Korshunov et al., 1997; Skula-
chev, 1996). Increasing ATP synthesis capacity may also reduce the magnitude of phosphorylation
control over mitochondrial respiration, shifting more control towards the electron transport system
(Gnaiger et al., 2000; Jacobs et al., 2012; Pesta and Gnaiger, 2012).

Our results also show that newly established populations at high altitude show increased HK
activity in comparison to low-altitude populations (Figure 3D; Figure 6C,D). Most of the low-altitude
taxa had very similar HK activities in the flight muscle (with the exception of ruddy ducks). Only

newly established and intermediate high-altitude populations had elevated HK activities, ranging
from 2.20- to 3.56-fold, which likely contributed to the significant species ! altitude interaction that
was detected in two-factor ANOVA (p<0.0001; Supplementary file 1b). These transient increases in
HK activity along with the convergent reductions in PK and LDH activity suggest that there are broad
changes across glycolysis in high-altitude taxa, potentially associated with changes in carbohydrate

oxidation and/or lactate production. Hypoxia exposure can lead to plastic increases in the reliance
on carbohydrate oxidation in mammals (Hochachka et al., 1998; McClelland et al., 1998;
Robin et al., 1984) and may be useful at high altitude by generating more ATP per molecule of O2

than lipid oxidation. However, carbohydrate oxidation may be constrained over time by glycogen
stores if carbohydrate fuels cannot be adequately supplied by the circulation (McClelland, 2004),

and we observed that the rise in HK activity in newly-established populations returned to low-alti-
tude levels in the most established high-altitude taxa (Figure 6C,D). These particular high-altitude
taxa may instead take advantage of more plentiful but O2-costly fuels (i.e., lipids), provided that suf-
ficient tissue O2 supply is maintained by evolved or plastic changes throughout the O2 transport

pathway (e.g., increases in haemoglobin O2 affinity, expansion of pulmonary O2 diffusing capacity)
(Maina et al., 2017; Natarajan et al., 2015).

Conclusions
Convergent changes have occurred in many pathways of metabolism across high-altitude waterfowl,
with increases in capacity for beta oxidation of lipids and adjustments in the activity of oxidative
phosphorylation (OXPHOS) enzymes that likely fine-tune mitochondrial function (Figure 1). However,

some changes required longer evolutionary time at high altitude to arise, suggesting that adaptive
changes in high-altitude taxa may involve several steps, such that some changes are only observed
in the longest-established highland taxa. Indeed, some changes in the activities of enzymes involved
in metabolizing lipids and carbohydrates may be convergent across taxa (increased HOAD activity,

decreased PK and LDH activities), whereas others are more time-dependent. In the latter case, HK
activity is elevated in relatively new high-altitude colonists, but is subsequently blunted over evolu-
tionary time. Similar distinctions between convergent (e.g., reduced complex IV activity) and time-
dependent (increase in complex V activity in only the most established highland taxa) changes exist
for mitochondrial OXPHOS enzymes. It is likely that high-altitude animals rely upon hypoxia acclima-

tization (Hochachka et al., 1998) when first colonising high altitude, followed by evolved physiologi-
cal specializations that adjust the capacity and flux of metabolic pathways, along with evolved
improvements in mitochondrial O2 supply that arise from increases in tissue capillarity (Leon-
Velarde et al., 1993; Mathieu-Costello et al., 1998; Scott et al., 2009a), Hb-O2 affinity
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(Galen et al., 2015; Natarajan et al., 2015; Projecto-Garcia et al., 2013), circulatory O2 delivery,
and/or pulmonary O2 uptake (Calbet et al., 2003; Maina et al., 2017; McClelland and Scott,
2019). Our data suggest that increases in capacity for beta oxidation, changes in capacity across gly-
colysis, and adjustments in mitochondrial function are common strategies to cope with the chal-
lenges of high altitudes, but that longer time scales of evolutionary adaptation can be required to
fully converge upon the ultimate high-altitude phenotype.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Chemical
compound, drug

Glucose Sigma
G8270

D-(+)-Glucose
#99.5% (GC)

Enzyme assay reagent

Chemical
compound, drug

ATP Sigma
A2383

Adenosine 5’-
triphosphate disodium
salt hydrate
Grade I,#99%,
from microbial

Enzyme assay reagent

Chemical
compound, drug

MgCl2 Sigma
M8266

Magnesium Chloride
anhydrous,#98%

Enzyme assay reagent

Chemical
compound, drug

NADP+ BioShop
Canada NAD007

B-NADP, Disodium
trihydrate,>95%

Enzyme assay reagent

Chemical
compound, drug

G6PDH Roche
10127655001

Glucose-6-Phosphate
Dehydrogenase (G6P-DH)
grade I, from yeast

Enzyme assay reagent

Chemical
compound, drug

LDH Roche
10127876001

L-Lactate Dehydrogenase
(L-LDH) from rabbit muscle

Enzyme assay reagent

Chemical
compound, drug

PEP Sigma
P7002

Phosphoenolpyruvic acid
trisodium salt hydrate
#97% (enzymatic)

Enzyme assay reagent

Chemical
compound, drug

ADP Sigma
A5285

Adenosine 5’-diphosphate
monopotassium salt
dehydrate bacterial,
#95%, powder

Enzyme assay reagent

Chemical
compound, drug

Pyruvate Sigma
P2256

Sodium pyruvate
ReagentPlus,#99%

Enzyme assay reagent

Chemical
compound, drug

NADH BioShop
Canada NAD002

NADH ß-NICOTINAMIDE
ADENINE REDUCED

Enzyme assay reagent

Chemical
compound, drug

Oxaloacetate Sigma
O4126

Oxaloacetic acid
#97% (HPLC)

Enzyme assay reagent

Chemical
compound, drug

Acetyl CoA BioShop
Canada ACO201

ACETYL COENZYME
A, Trilithium Salt

Enzyme assay reagent

Chemical
compound, drug

DTNB Sigma
D218200

5,5’-Dithiobis
(2-nitrobenzoic acid)
ReagentPlus, 99%

Enzyme assay reagent

Chemical
compound, drug

Isocitrate Sigma
I1252

DL-Isocitric acid
trisodium salt hydrate
#93%

Enzyme assay reagent

Chemical
compound, drug

CoQ10 Sigma
C9538

Coenzyme Q10,
#98% (HPLC)

Enzyme assay reagent

Chemical
compound, drug

Rotenone Sigma
R8875

Rotenone,
#95%

Enzyme assay reagent

Chemical
compound, drug

BSA Sigma
A6003

Bovine Serum Albumin
lyophilized powder,
essentially fatty acid
free,#96% (agarose gel
electrophoresis)

Enzyme assay reagent

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Chemical
compound, drug

KCN Sigma
60178

Potassium cyanide
BioUltra,#98.0% (AT)

Enzyme assay reagent

Chemical
compound, drug

Succinate Sigma
S2378

Sodium succinate
dibasic hexahydrate
ReagentPlus,#99%

Enzyme assay reagent

Chemical
compound, drug

DCPIP Sigma
D1878

2,6-Dichloroindophenol
sodium salt hydrate,
BioReagent

Enzyme assay reagent

Chemical
compound, drug

DUB Sigma
D7911

Decylubiquinone,
#97% (HPLC)

Enzyme assay reagent

Chemical
compound, drug

CytcCH2 Sigma
C7752

Cytochrome c
from equine heart
#95% based on
Mol. Wt. 12,384 basis

Enzyme assay reagent

Chemical
compound, drug

Oligomycin Sigma
O4876

Oligomycin from
Streptomyces
diastatochromogenes
#90% total oligomycins
basis (HPLC)

Enzyme assay reagent

Chemical
compound, drug

HK Roche
11426362001

Hexokinase (HK) Enzyme assay reagent

Chemical
compound, drug

Acetoacetyl CoA Sigma
A1625

Acetoacetyl coenzyme
A sodium salt hydrate
Cofactor, for acyl transfer

Enzyme assay reagent

Chemical
compound, drug

Creatine Sigma
C3630

Creatine monohydrate,
#98%

Enzyme assay reagent

Chemical
compound, drug

PK Roche
PK-RO

Pyruvate Kinase (PK)
from rabbit muscle

Enzyme assay reagent

Chemical
compound, drug

KH2PO4 P5378 Potassium phosphate
monobasic,
ReagentPlus

Assay buffer reagent

Chemical
compound, drug

EGTA Sigma
E4378

Ethylene glycol-bis
(2-aminoethylether)-
N,N,N’,N’-tetraacetic acid,
#97.0%

Assay buffer reagent

Chemical
compound, drug

EDTA Sigma
EDS

Ethylenediamin
etetraacetic acid
BioUltra, anhydrous,
#99% (titration)

Assay buffer reagent

Chemical
compound, drug

Triton-X 100 Sigma
X100

Triton X-100
laboratory grade

Assay buffer reagent

Software, algorithm Geneious Biometters Ltd.,
Auckland, NZ

Used for sequence
alignment

Software, algorithm PAUP Version 4, Sinauer Associates,
Sunderland, Massachusetts, USA

Used to generate
branch lengths

Software, algorithm MESQUITE https://www.
mesquiteproject.org/

Used to analyze
phylogenetic contrasts

Software, algorithm PDAP module http://mesquiteproject.
org/pdap_mesquite/

Used to analyze
phylogenetic contrasts

Software, algorithm IM https://bio.cst.temple.
edu/~hey/software

Used to calculate
divergence

Tissue sampling
Waterfowl were captured at high altitudes (3822–4806 m) or at low altitudes (0–1050 m) in various

locations in and near the Andes across South America and from low-altitude sites in North America.

Tissues from some birds were sampled immediately on site, whereas others were sampled after birds
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were transported to a nearby field lab where they were provided with unlimited access to water for

12–18 hr, prior to being euthanized. In all cases, samples of pectoralis muscles were quickly dis-

sected and frozen in liquid N2 and stored at "80˚C for enzyme analysis (see below). Muscle samples

were taken at three depths in the middle of the tissue (surface, intermediate, and deep), in order to

account for heterogeneity of muscle fibers throughout the pectoralis This heterogeneity is important

to consider, because flight muscle tends to become more oxidative at deeper depths from the ven-

tral surface (Scott et al., 2009a), as confirmed by the variation observed here (Supplementary file

1j).
Samples were imported to Canada with authorization from the Canadian Wildlife Service (Scien-

tific Possession No. 369) and collected with authorization from the Servicio Nacional de Area Natu-

rales Protegidas del Peru (004–2014-SERNANP-DGANP-RNT/J), Dirección General Forestal y de

Fauna Silvestre del Peru (RD 169–2014 MIN AGRI-DGFFS/DGEFFS, 190–2015-SERFOR-DGGSPFFS),

Ministerio de Industria, Agricultura, y Ganaderia Chubut (No. 24/07 y 1636/14), Ministerio de Asun-

tos Agrarios Buenos Aires, Ministerio de Producción de Entre Rios, Oregon Department of Fish and

Wildlife (101-15), and USFWS Region 1 Migratory Bird Permit Office (MB68890B-0). All protocols

were carried out in accordance with guidelines that were approved by the Institutional Animal Care

and Use Committee at the University of Miami or University of Alaska.

Phylogenetic tree generation
Mitochondrial DNA (mtDNA) sequences were obtained for each population in this study. Most were

available from previously published data sets including McCracken et al., 2009c for A. georgica,

Bulgarella et al., 2012 for Lophonetta specularioides, Wilson et al., 2013 for A. cyanoptera (syn.

Spatula cyanoptera), Muñoz-Fuentes et al., 2013 for Oxyura jamaicensis, Bulgarella et al., 2014 for

Chloephaga spp., and Graham et al., 2018 for A. flavirostris. To this, we also supplemented unpub-

lished mtDNA sequences from A. puna and A. versicolor (syn. Spatula spp.) (Wilson et al., 2013.

Dissertation 2010). The sequence we utilized comprise ~684 bp of the mtDNA control region corre-

sponding to previously published primers L78-H774 (Johnson and Sorenson, 1999; Sorenson and

Fleischer, 1996). GenBank accession number can be found in the referenced articles and in supple-

mentary materials (Supplementary file 1i). As each species possessed numerous small indels, align-

ment was performed in Geneious (Biomatters Ltd., Auckland, NZ). Indels were treated as missing

data, and the resulting alignment was refined by eye to correct ambiguities. All sequences were

obtained using PCR and capillary DNA sequencing protocols as described in McCracken et al.,

2009c. Next, we generated a tree with branch lengths constrained to match the Gonzalez et al.,

2009 topology, which is the most recent phylogenetic analysis of waterfowl to include all of these

species. Branch lengths for this tree were generated using maximum parsimony in the software

PAUP (Version 4, Sinauer Associates, Sunderland, Massachusetts, USA).

Enzyme activities and myoglobin assays
The maximal activities of 13 enzymes as well as myoglobin content were assayed as previously

described (Dawson et al., 2016). The reported enzyme activity content for each individual bird is

the average value from the samples taken across the three depths of muscle (which are fully

reported in Supplementary file 1j). Wilcoxon signed-rank test (paired lineage tests; Figures 3–5) as

well as two-factor ANOVA followed by Bonferroni post-tests (Figure 6; Supplementary file 1b,

Supplementary file 1c) were used to make statistical comparisons between high-altitude versus

low-altitude taxa. The maximal activities of 13 enzymes as well as myoglobin content were assayed

as previously described (Dawson et al., 2016) using a Spectramax Plus 384 spectrophotomer

(Molecular Devices, Sunnyvale, CA, USA) at avian body temperature of 41˚C. Samples were homoge-

nized in 10 volumes of ice-cold homogenizing buffer [100 mM KH2PO4 buffer, pH 7.2, containing 1

mM EGTA, 1 mM EDTA, 0.1% Triton-X 100, and 1 mM phenylmethylsulfonyl fluoride (PMSF)]. Homo-

genates were then centrifuged at 1,000 ! g at 4˚C and the supernatant was collected for use in

assays. Enzyme activities were determined for each sample as the difference between the rate mea-

sured using all assay components (assayed in triplicate) and the background reaction rate, all mea-

sured at avian body temperature (41˚C). Measurements were carried out as described in

Supplementary file 1h. Preliminary experiments determined that all substrate concentrations were

saturating. Enzyme activities are expressed in units of micromole substrate per gram tissue per
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minute, with protein concentrations determined using the Bradford method (BioRad, Mississauga,

ON, Canada). Myoglobin content was assayed in triplicate using a modified version of the original

method (Reynafarje, 1962), as described in Dawson et al., 2016. Biochemicals were from Sigma-

Aldrich (Oakville, ON, Canada) unless otherwise stated.
Wilcoxon signed-rank test (paired lineage tests; Figures 3–5) as well as two-factor ANOVA fol-

lowed by Bonferroni post-tests (Figure 6; Supplementary file 1b, Supplementary file 1c) were

used to make statistical comparisons between high-altitude versus low-altitude taxa. Data are pre-

sented as means ± SE. p<0.05 was considered significant. When significant interactions occurred,

they were often attributed primarily to opposing patterns observed in the ruddy ducks. The excep-

tions were HK and ATPase, for which the significant interactions were attributed to changes that

appeared to be associated with differences in evolutionary time at high altitude.
The linear relationship between mass and enzyme activity or myoglobin content was assessed in

order to determine if enzyme activity or myoglobin content varies with the mass of individual water-

fowl independent of altitude. Enzyme activity or myoglobin content was plotted on the y-axis against

mass on the x-axis from both high- and low-altitude waterfowl and the slope, as well as, goodness of

fit (r2) were determined (Supplementary file 1d, Supplementary file 1e). A significant relationship

between mass and enzyme activity was determined when p<0.05.

Phylogenetically independent contrasts
To conduct analysis of phylogenetically independent correlations (PIC), the maximum parsimony tree

constrained to match the same topology as Gonzalez et al., 2009 global waterfowl phylogeny (Fig.

S1) and branch lengths were imported into MESQUITE (Maddison and Maddison, 2016). The PDAP

module (Midford, 2010) was used to carry out PIC analyses to assess whether the relationship

between altitude and enzyme activity persisted after taking into account the effects of phylogeny

(Supplementary file 1f, Supplementary file 1g). Significant relationships between raw contrasts

and their standard deviations were not generally observed, and only in a few cases when ruddy

ducks were included in the analysis. In such cases, we used exponential transformation of branch

lengths to eliminate these significant relationships before carrying out PIC correlations

(Garland et al., 1992). We observed similar results in PIC analyses using branch lengths that were

set to one (data not shown).

Time at altitude and time since divergence
To quantify duration of high-altitude ancestry, we used two methods for each taxon pair to calculate

population genetic parameters indicative of the evolutionary time each highland population has

likely been at high altitude, and to examine the time dependence of activity of enzymes. First, we

calculated the pairwise fixation index FST between each pair of low- and high-altitude sister popula-

tions. We utilized the same previously published mtDNA control region data sets for these popula-

tions (Bulgarella et al., 2014; Bulgarella et al., 2012; Graham et al., 2018; McCracken et al.,

2009c; Muñoz-Fuentes et al., 2013; Wilson et al., 2013). This index of population differentiation,

comparable to Wright’s (1965) fixation index FST, is bounded by 0 and 1 (Wright, 1965). Thus,

whereas pairs of populations with FST closer to 0 are expected to be recently diverged, FST closer

to 1 is indicative of populations with much older divergence, as is the case for fully differentiated

species that have ceased gene flow. Populations with intermediate FST are expected to fall some-

where in the middle of this continuum. This approach allowed us to relate metabolic distinctiveness

between high- and low-altitude populations to their relative magnitude of genetic divergence. Sec-

ond, we used a two-population coalescent model in the software IM (Hey Lab, Temple University) to

calculate the population divergence parameter, t/site, which represents the average tree height of

all genealogies in each coalescent analysis (Hey, 2005; Hey and Nielsen, 2004). Multiplied by the

mutation rate (m) this parameter can then be used to calculate time since divergence (T) in years.

This has advantages over FST because it allowed us to incorporate evolutionary processes in our

model including divergence due to genetic drift, and therefore uncertainty in our estimates, as well

as gene flow (i.e., migration in both directions) for which some of these populations have been

shown to exhibit more connectivity than others. Starting parameters for these analyses were condi-

tioned on the data by first making several preliminary runs using wide priors and described as pub-

lished previously (Bulgarella et al., 2014; Bulgarella et al., 2012; Graham et al., 2018;
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McCracken et al., 2009c; Muñoz-Fuentes et al., 2013; Wilson et al., 2013). Finally, we were able

to convert t/site to time in years using the substitution rate for the 5’ end of the control region pub-

lished by Peters et al., 2005 of 4.8 ! 10"8 substitutions/site/year (Peters et al., 2005). This pro-

vided an approximation to the date at which these high-altitude populations might have

experienced a founder event following the colonization of high altitude for the first time, whereas

the rank order of FST also likely corresponds to their rank order newest to oldest high-altitude resi-

dents. Finally, it should be noted that the Andes have been rising throughout the Cenozoic for

approximately 80 million years (Ramos, 2005; Royden et al., 2008), and while some parts of the

Andes uplifted more recently than others, the oldest of these waterfowl populations (i.e., South

American sheldgeese) are probably diverged no more than several millions years ago (Johnson and

Sorenson, 1999). Therefore, in all cases the Andes had already uplifted to close to their present

height when these high-altitude populations first became established.
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