
Letters

Abootstrap approach is a superior
statistical method for the
comparison of non-normal data
with differing variances

Phytologists have a primary interest in understanding plant growth,
development and environmental responses. Experimentally, we
rely on probing these by perturbing a system and monitoring
changes, whether it be growth rate with temperature or gene
expression in response to stress. To assess the significance of data
from such experiments, frequentist statistics are used to ascertain
the probability that a difference in a test statistic between conditions
was due to chance (aP-value).When data are not normal, the adage
is to use a nonparametric test for this analysis: the most common
being the Mann–Whitney–Wilcoxon (MWW) test. Here, we
explore conditions in which the MWW test is unsuitable and
propose the use of a bootstrap approach instead.

Most experiments aim to assess whether somemetric is greater or
less under different conditions, by an analysis of the change in the
median or mean of that metric. TheMWW test challenges the null
hypothesis that two data distributions are the same (Mann &
Whitney, 1947), not whether the two distributions have the same
median. Therefore, it is possible to find a significant difference in an
MWW test with distributions that have the same median, but
different variances (i.e. heteroskedastic data) (Hart, 2001).

These conditions are not uncommon in several experimental
contexts, one being the measurement of symplastic cell-to-cell
spread of green fluorescent protein (GFP) (Oparka et al., 1999;
Burch-Smith & Zambryski, 2010). These assays allow the
experimenter to count the number of cells (‘cell count’), or the
number of concentric rings of cells (‘cell layers’), to which GFP has
spread from a single cell (Fig. 1a) as a measure of the status of
connectivity. Neither cell nor layer counts are normally distributed
(Fig. 1b–d, upper), so most studies use the nonparametric MWW
test to compare conditions to identify factors that regulate the
connection and communication between cells.

However, it is also clear that the shape of the distributions
differs between experimentally compared conditions or genotypes
(Fig. 1b,c) (Guseman et al., 2010; Diao et al., 2018; Cheval et al.,
2020). Thus, if an MWW test is used on cell count data, the
difference in distribution shapes between conditions may lead to
the erroneous conclusion that there is a significant difference in
the amount of spread of GFP. Therefore, a different statistical
method is required to properly interpret differences in nonpara-
metric heteroskedastic data. For this, we propose a bootstrap
method (Efron, 1979).

A P-value is defined as the probability of observing a value at
least as extreme as the observed test static. This is done by a
comparison with the null distribution, which describes the
probability distribution of the test static when the null hypothesis
is true. In the case of cell-to-cell connectivity, the test statistic is
the difference in medians (θ̂). The null distribution describes the
probability of observing a difference in medians when there is no
true difference in the underlying data. Usually, a known
distribution is used (e.g. t-distribution or F-distribution) but in
this case it is unknown because the data do not follow parametric
distributions (Fig. 1b,c).

Bootstrapping techniques can be used to generate a null
distribution de novo from the observed data already collected if
the samples are independent. This removes the requirement of
using a known distribution. To do this, the observed data are
sampled with replacement to generate a resample. This mimics
what the experimenter has done originally when observing the true
population. The relationship between multiple resamples and the
observed data can be used to reveal how the observed data relate to
the true population, and so estimate a P-value for the observation.

An example R function is provided to perform this analysis
(Supporting Information Notes S1, medianBootstrap.R; https://
github.com/faulknerfalcons/Johnston-2020-Bootstrap), which
requires two arguments, that is two vectors of numbers: control
and treatment. The function generates a null distribution to
compare against by resampling each vector N times (by default
5000) and, for each resample, generates a resampled test statistic
(

á

θ∗). These N resampled test statistics are made into a null
distribution by

á

θ∗n � θ̂
���

��� (Fig. 1b,c, lower) as suggested by Hall &
Wilson (1991).

As this is a random sampling technique, an exact P-value cannot
be calculated but is estimated by a Monte Carlo P̂ -value (Eqn 1).
Thus, θ̂ is compared with the null distribution to find the chance of
observing a value at least as extreme (line on Fig. 1b,c, lower).
A + 1 is added to the numerator and denominator in Eqn 1 as
suggested by Davison &Hinkley (1997): conceptually, this can be
considered as including the observed sample among the bootstrap
resamples.

p̂¼
∑N

n¼1I

á

θ∗n � θ̂
���

���≥ θ̂
� �

þ1

N þ1
Eqn 1

where I ð�Þ is the indicator function and

á

θ∗n is the n
th resampled test

statistic.
As P̂ is an estimate of P a 95% confidence interval should be

constructed, where P will fall within this range 95% of the time
(Wilson, 1927).

This method is not confounded by differences in variance or
shape as with the MWW test. To illustrate this, we compared the
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type I error rate (false positives) between the MWW and
medianBootstrap tests, when testing if there is a difference in
medians between two populations for which there was no true
difference in medians, that is θ¼ 0 (Fig. 2). In this scenario, an
error rate of 5% is expected at α¼ 0:05. Equal samples
(nA ,nB ¼ 100) for each population were drawn from normal
distributions with the same median and three different shapes,
simulated in R v.4.0.0 (R Core Team, 2020).

In the first instance, in which both distributions are equal
(A,B ∼N ð0,1Þ), both the MWW and medianBootstrap methods
gave a difference in medians about 5% of the time, as expected
(4.5% (95% CI [3.4, 6.0]) and 4.9% (95% CI [3.7, 6.4]),
respectively) (Fig. 2a). When variances differed between popula-
tions (A ∼N ð0,1Þ), B ∼N ð0,52Þ), the MWW test had a false-
positive rate significantly higher than the set 5% of 7.5% (95%
CI [6.0, 9.3]). Conversely, the false-positive rate of the

medianBootstrap method was correctly controlled at 4.7% (95%
CI [3.6, 6.2]) (Fig. 2b). When two samples are drawn from
populations with equal variance and median, but differing

shape and mean A ∼N 1� 1ffiffi
23

p , 3
80

� �
,B ∼Beta 1,3ð Þ

� �
, a

medianBootstrap method finds a significant difference in 5.1% of
the trials (95% CI [3.9, 6.6]), as expected, whereas an MWW test
inflates the type I error rate to 17% (95% CI [15, 19]) (Fig. 2c).

ThemedianBootstrapmethodwas robust to unequal sample sizes
in all cases, provided the sample number was 10 or greater (Fig. 2).
Thus, we recommend that both samples have at least 10
constituents for a robust result. Alongside this sample size
requirement, samples must be independent and representative of
the overall population. A bootstrapped difference in medians
was used here as a comparison against the MWW test; it is worth
noting that any test statistic, θ, can be computed in a bootstrapped

(a)

(b) (c) (d)

Fig. 1 Bootstrap statistics onGFPmovement data. (a) An example image ofGFPmoving froma single transformation site. The degree ofmovement can either
be counted as the number of fluorescent cells (denoted with stars, 17 cells) or the number of cell layers with GFP (blue overlays, three layers). Bars, 100 µm.
(b–d) Top: Histograms of cell counts or layers, with the median and mean marked. Bottom: Bootstrap null distributions θ̂∗� θ̂

���
���

� �
for the differences in (b, c)

median or (d) mean, with estimated P̂-values and 95% confidence intervals (CI). The observed difference (θ̂) is marked by a red line. Data for (b) from Cheval
et al. (2020) and data for (c, d) from Diao et al. (2018) are both under the CC-BY 4.0 licence.
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manner, provided the test is invariant to scaling. This is required, as
a bootstrap test generates the null distribution by rescaling the
distributions around 0. Thus, the test statisticmust be the same atX
and X + n, for example the median and arithmetic mean are
suitable, but the geometric mean is not.

Therefore, the medianBootstrap method is a more appropriate
analysis to identify differences in the spread of GFP, as cell count
data exhibit unequal variances and differing distribution shapes
between conditions and/or genotypes.Moreover, bootstrap testing
canbe extended to cell layer data,wheremeans shouldbe compared,
as there is no difference in medians (Fig. 1d). An example of this
extension is given in Notes S2, medianBootstrap.html.

We acknowledge alternative advanced statistical techniques,
such as linear mixed effects models, for analysis of these data.
However, they require more assumptions and are less user friendly,
often leading to mistakes (Knief & Forstmeier, 2020). In addition,
we note that data are more complex than a single metric and
support the movement to present figures with the data points, as
well as summary statistics (Weissgerber et al., 2019). Moreover,
while a summary statistic such as the median may remain
unchanged, the distributions may still differ in a biologically
relevant way, such as in a difference in variance. We consider this

bootstrap method a good, easy-to-use, superior alternative to
MWW analysis of cell-to-cell movement data.
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Fig. 2 Type I error rates are correctly controlled using amedian bootstrapmethod. Three experiments were simulated in which data were compared from two
samples drawn from different distributions with equal medians. The false-positive (type I error) rate was estimated for the null hypothesis that population
medians are the sameusing theMann–Whitney–Wilcoxon andmedianBootstrap test in each experimentwith 1000 simulations. The 95%confidence intervals
for the type I error rate are indicated by shading. Each experimentwas repeatedwith differing sample sizes for both A and B. (a) Two sampleswere drawn from
identical distributions. (b) Two samples have the samemean, but differingvariances. (c) Two samples have the samevariance, but differ in shapeandmean.The
medians of each distribution are marked with a dashed line.
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Supporting Information

Additional Supporting Information may be found online in the
Supporting Information section at the end of the article.

Notes S1 A short R script that provides a bootstrap function
(medianBootstrap()) for the comparison of medians between two
datasets, which returns a P̂ -value and associated confidence
intervals. It can be used to directly replace the Mann–Whitney–
Wilcoxon wilcox.test() function from base R. medianBootstrap
(data1, data2, N = 5000, alpha = 0.05), requires two vectors of
data (data1 and data2) and accepts to optional arguments: the
number of bootstraps (N, default 5000) and the significance level
for the constructing the confidence intervals (alpha, default 0.05).

Notes S2Aprimer on how to use themedianBootstrap.R code, with
an example use case of the medianBootstrap() function; the code is
then extended to replicate the functionality of a one-way ANOVA,
allowing multiple-to-one bootstrap comparisons, as well as
providing functions for the comparison of means and plotting
the null distribution.

Please note: Wiley Blackwell are not responsible for the content or
functionality of any Supporting Information supplied by the
authors. Any queries (other than missing material) should be
directed to the New Phytologist Central Office.
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