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Summary

Plant biology is experiencing a renewed interest in themechanistic underpinnings and evolution

of phenotypic plasticity that calls for a re-evaluation of howwe analyse phenotypic responses to

a rapidly changing climate. We suggest that dissecting plant plasticity in response to increasing

temperature needs an approach that can represent plasticity over multiple environments, and

considers both population-level responses and the variation between genotypes in their

response. Here, we outline how a random regressionmixedmodel framework can be applied to

plastic traits that show linear or nonlinear responses to temperature.Randomregressionsprovide

a powerful and efficient means of characterising plasticity and its variation. Although they have

beenusedwidely in other fields, they have only recently been implemented in plant evolutionary

ecology. We outline their structure and provide an example tutorial of their implementation.

I. Introduction

In a rapidly changing climate, plants face challenges from the
environment distinct to those experienced by their ancestors in the
recent evolutionary past. The capacity of a single genotype to
generate alternative phenotypes based on shifts in environment – or
phenotypic plasticity (Bradshaw, 1965, 2006) – is a potential
mechanism bywhich plants can respond quickly to changes in their
environment (Nicotra et al., 2010). In the face of a warming world,
research interest in phenotypic plasticity and its genetic basis has
accelerated dramatically, as researchers endeavour to understand its
potential role for population persistence and adaptation (Chevin&
Hoffmann, 2017). However, a precursor to addressing such
questions is the need to characterise the nature of the phenotypic
responses to environmental variation, namely the shape of reaction
norms.

Reaction norms provide information on the direction and
magnitude of phenotypic change elicited in response to environ-
mental variation (Box 1), and can be compared across genotypes,
populations or species. Here we focus on plastic responses to
temperature – one of the most important aspects of our changing
climate for plants – but the arguments we present are equally
applicable to other biotic and abiotic environmental drivers (e.g.
herbivory, light, water, nutrients, CO2 and predation). Reaction
norms in plants are frequently analysed by comparing trait
expression between two temperatures or by assuming a linear
response to temperature. However, this assumption – whilst
statistically convenient –may obscure key properties of the plants’
responses to changing environments, and could ultimately impede
a comprehensive biological understanding of plasticity (Chevin &
Lande, 2011). Furthermore, reaction norms can have markedly
dissimilar shapes for different traits across the same environmental
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rangewithin a species (e.g. Vitasse et al., 2010) and among different
species with the same trait and environmental range (e.g. Schou
et al., 2017). Characterising the shape of reaction norms as
nonlinear or continuous functions of the environment will thus
be more realistic and informative than assuming simple linear
reaction norms (Stinchcombe et al., 2012). However, doing so
introduces complexity that can be challenging to quantify
(Valladares et al., 2006).

Whether reaction norms are simple ormore complex, analyses of
plasticity in response to a changing environment can address two
key questions: (1) What is the average response across all
individuals (genotypes, lines, clones or families could equally be
interchanged with individuals) in a population? (2) How much do
different individuals within a population vary in their plasticity?
Question (1) considers a single ‘population-level’ reaction norm for
the average response of individuals to a range of conditions (e.g. a
temperature gradient), whereas question (2) considers variation in
individual reaction norm shapes driven by among-individual
differences within a population.

We outline here how a random regression mixed model
(RRMM) approach offers a statistically efficient and appropriate
way to describeboth the population-level response and the variation
among individuals in that response, using nonlinear functions if
required (Nussey et al., 2007; Morrissey & Liefting, 2016).
RRMMs have been widely used in the animal breeding (Schaeffer,
2004) and animal evolutionary ecology literature (Nussey et al.,
2007; Stinchcombe et al., 2012), and, very recently, to represent
changes with age in tree or plant breeding studies (e.g. Pujol et al.,
2014; Sun et al., 2017;Campbell et al., 2018;Marchal et al., 2019).
However, despite previous recommendations (Pujol & Galaud,

2013), to our knowledge, RRMMs have not yet been widely
implemented in many disciplines of plant biology to analyse
plasticity.Our aim here is to provide a brief overview of the random
regression approach and some tools to apply it, in the hope of
encouraging use of the technique.

II. The many shapes of phenotypic plasticity

Plant phenotypic traits exhibit a variety of plastic response shapes
to changes in temperature. Reaction norms of most phenotypic
traits, if sampled across a wide enough range of temperatures, are
typically curved (nonlinear). For example, a shallow parabolic
curve typically describes the optimal temperature for carbon gain,
which is highest at a range of intermediate growth temperatures,
declining either side of this range (Fig. 1a; e.g. Gunderson et al.,
2010). Traits such as seed germination rate might exhibit a more
peaked but still nonlinear response to temperature (Fig. 1b),
where germination is optimal within an intermediate temperature
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Fig. 1 Typical nonlinear reaction norm examples demonstrating the variety
of shapes of plasticity in response to growth temperature: (a) shallow
parabolic reaction norm shape of optimal temperature for carbon gain; (b)
peaked response of seed germination percentage; (c) sigmoidal response of
day of flowering onset; and (d) threshold response of growth rate of an algal
colony in response to temperature. (e) Describing reaction norms with only
two points (solid lines and points) may miss fundamental and biologically
meaningful aspects of the underlying reaction norm shape (dashed line). (f)
Adding just onemorepoint (a third environmental level) captures farmore of
the underlying reaction norm shape.

Box 1 Glossary

The terms used to describe phenotypic plasticity are numerous and
frequently confused or confusing. For clarity, we therefore set out
here the definitions we are using. Phenotype refers to traits of an
organism resulting from both genetic and environmental influences.
We use the term genotype in a broad, population-genetic sense, to
refer to the complete genome of a genetic unit (e.g. an individual,
clone, family or line). Phenotypic plasticity is then the ability of a
single genotype to express different phenotypes under different
environmental conditions; note that this may include a maladaptive
response to a change in environment (Nicotra et al., 2010; Gianoli &
Valladares, 2012).Acclimation is a facultative and reversible form of
plasticity, which alters short-term physiological processes and
phenotype in response to environmental variation (Beaman et al.,
2016; S�andor et al., 2018). A reaction norm describes the shape or
specific form of the phenotypic response to the environment of an
individual or genotype (Scheiner, 1993; Via et al., 1995).Genotype-
by-environment interactions (G9 E) occurwhengenotypes differ in
the slope of their reaction norms (Nussey et al., 2007; Josephs,
2018). The term G9 E is sometimes used synonymously with
plasticity, where differences among genotypes rather than plasticity
are of specific interest (e.g. crop models: Heslot et al., 2014; plant
breeding: Elias et al., 2016). Population-level plasticity refers to the
average across the population of individual-level reaction norms of
individual or genotype.
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range and decreases sharply either side of this optimum (e.g.
Cochrane et al., 2014). Although often modelled linearly, phe-
nological measures such as date of flowering onset may sometimes
be better described with a sigmoidal response to temperature
(independent of photoperiod) that incorporates temperature
extremes (Fig. 1c), and which would otherwise be missed with a
narrower temperature range (Jochner et al., 2016). Finally,
although not a plant example, growth rates of phytoplankton
show a strong threshold relationship with temperature (Fig. 1d),
where growth rate drastically declines beyond a critical temper-
ature (Hinners et al., 2017).

Characterising plasticity from only a small subset of discrete
environments may obscure aspects of plasticity that would only be
apparent from consideration of a wider range of environmental
conditions (Schlichting, 2008). Standard experiments typically
assess plastic responses by comparing phenotypes in a single ‘low’ vs
‘high’ temperature, often focusing on historically realistic values in
the current environment (e.g. Frei et al., 2014; Nicotra et al.,
2015). However, when reaction norms are nonlinear across a wider
range of biologically relevant temperatures, choosing two arbitrary
pointsmay result in a highlymisleading representation of plasticity.
For example, if the underlying reaction norm is nonlinear, then
fitting a linear reaction norm between two points will severely
underestimate or overestimate the phenotypic response at inter-
mediate or extreme temperatures (Fig. 1e). A solution to this
oversimplified reaction norm problem is to map the phenotypic
trait response across multiple temperatures (at least three and
ideally as many as can be managed logistically) to characterise the
whole reaction norm shape (Fig. 1f). This reaction norm approach
can also be applied to ‘natural’ sources of temperature variation
such as years of a study or elevation of sites, for studies of wild
populations, by assigning an arbitrary index value (e.g. 1–2–3) to
the environmental treatment levels.

With an appropriate statistical framework, both population- and
individual-level plasticity can then be assessed. Population-level
plasticity in response to a changing climate has broad implications
for crop production, tree breeding, evolutionary ecology and
ecophysiology. Coupled with some measure of fitness, assessing
variation in plasticity between individuals or genotypes within a
population potentially allows us to investigate whether differences
in plasticity are associated with differences in fitness, and hence
whether plasticity is under selection. Furthermore, we can ask
whether that variation in plasticity has a heritable genetic basis
(additive genetic variance underlying genotype-by-environment
interactions: G9 E), and so could potentially evolve or respond to
artificial selection. RRMMs provide an efficient means of charac-
terising population-level and individual variation in both linear or
nonlinear reaction norms within a population (Morrissey &
Liefting, 2016). From the output of these models, measures of
plastic responses can then be extracted to compare across individ-
uals, genotypes, populations or even species.

III. Random regression mixed model framework

Myriad approaches to quantifying plasticity are available in the
literature. These include derivation of quantitative indices or

metrics of plasticity (Valladares et al., 2006; Sadras et al., 2009;
Murren et al., 2014) and decomposition of reaction norm shape
changes (Izem & Kingsolver, 2005). However, many approaches
share a commonality of assessing variation in reaction norms over
multiple steps, by first extracting individual- or genotype-level
indices and then analysing these. This ‘statistics-on-statistics’ may
have pitfalls of interpretation (Morrissey & Liefting, 2016). In
contrast, random regression (or random slopes) mixed model
(RRMMs) analyses fit individual-level reaction norms and thus
assess their variation in a single step. Typical implementations of
RRMMs also have the flexibility to model virtually any shape of
linear or nonlinear response to a changing environment.

RRMMs, like other forms of mixed models, are composed of
two predictor components: ‘fixed’ effects (the variable(s) of interest
because of their direct effects on the response variable) and
‘random’ effects (the variable(s) that contribute variance among
values of the response; Zuur et al., 2009). These models are
incredibly versatile and vary in complexity, and hence we outline a
series of increasingly complex scenarios here, with model formulae
described in Box 2 and Supporting Information Notes S1, and a
worked example with data and R code in Notes S2–S4. Consider
the following example: we are interested in determining the effect
of temperature on seed germination, and as such, we measure
reaction norms of a set of genotypes (e.g. full-sibling families). The
primary objective is to determine the overall population-level
average effect of temperature on seed germination, and hence
temperature is a fixed effect function (which may be nonlinear).
However, we might also be interested in quantifying how much
variation there is among genotypes around the average population-
level function, and hence genotype is fitted as a random effect
(random intercepts), so that the model quantifies the overall
variance among genotypes in their mean germination rates. To
quantify variation around the average responses in the shape of
reaction norms of the individual genotypes, a random regression
term (or terms) can then be added to the model, to represent the
reaction norm for each genotype, such that variance in the terms
describing these individual reaction norms can then be estimated.
We give a brief outline of the respective statistical models in Box 2.

To illustrate the RRMM, we present four hypothetical popu-
lation-level (fixed) reaction norm shapes of phenotypic trait values
in response to changing temperature, along with different random
effects (Fig. 2). The functions describing the four population-level
(i.e. average) reaction norm shapes are: linear (Fig. 2a–c), quadratic
polynomial (Fig. 2d–f), sigmoidal (Fig. 2g–i) and a cubic spline
estimated from a generalised additivemodel (GAM; Fig. 2j–l). The
GAM is a highly flexible model for complex reaction norm shapes
(e.g. Hinners et al., 2017). Each population-level reaction norm
shape is modelled along with three different scenarios of variation
in the individual reaction norms, which are represented by different
functions of each of the random effects separately (the three rows of
Fig. 2). In the final column, we have visually isolated each random
effect by presenting the relative difference between each individual
reaction norm and the population-level average response (Fig.
2m–o).
The simplest mixed model is a linear fixed effects and random

intercepts-onlymodel (Fig. 2a; Box 2, Eqn 1).The phenotypic trait
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ismodelled as a population-level (fixed component) linear function
of temperature, where genotypes differ only in their mean
(intercept) deviation from the population mean, but not in the
slope of their reaction norms (Fig. 2m). However, when the slopes
(as well as intercepts) of the individual genotype reaction norms
vary, fitting a linear random regression term (Fig. 2b,n; Box 2,
Eqn 2) will give a better representation of plastic responses. When
individual reaction norms also vary in their nonlinear component
(e.g. curvature), random regressions can also be further extended to
incorporate nonlinear deviations from the population average
(Fig. 2c,o; Box 2, Eqn 3).

The principle of increasing complexity of the fixed effect
(population-level) component of a mixed model can then be
extended to other basis functions (Fig. 2d–l; Notes S1). For
example, higher-degree polynomial and sigmoidal functions might
be appropriate for estimating the population-level average response
to temperature (see Section II; Fig. 1). Furthermore, as reaction
norm complexity increases, a basis function that allows for more
variation in the reaction norm shape, such as aGAM,may be worth
investigating (Fig. 2j; Notes S1).

Increasing complexity can also be added to the random effect
component of themodel.However, importantly, irrespective of the
complexity of the fixed (population-level) component of the
model, it may be sufficient to model variation among genotypes
with just a linear term if the random slope component (relative to
the mean) does not meaningfully deviate from linearity (e.g.
Fig. 2n). For example, phenotypic trait valuesmight exhibit greater
variation among genotypes as temperature increases toward

extremes (e.g. Kronholm et al., 2016), such that genotypes
expressing similar trait values at lower temperatures express much
greater variation in trait values at higher temperatures (Fig. 2b,e,h,
k). This is a valuable property of RRMMs: a complex nonlinear
function can be used to describe the fixed component of themodel,
whilst a simpler (e.g. linear) function may be sufficient for
describing variation in the random regression component (Mor-
rissey & Liefting, 2016). In all cases, models of different levels of
complexity in both the fixed and the random effect functions can be
evaluated statistically (Box 2).

Analysing plasticity data in a single mixed model analysis avoids
the drawbacks of multistep approaches, whilst being flexible for
unbalanced designs and different reaction norm functions, and
having vast potential for extension. For example, RRMMs can
incorporate additional experimental covariates as either fixed (e.g.
number of leaves) or random (e.g. replicate observations) effects.
Models will typically return estimates of the covariance between
genotype-specific intercepts and slopes, which will then give an
indication of whether genotypes with higher trait values are
typically those associated with more (or less) plasticity (Nussey
et al., 2007). If the trait in question is a component of fitness that
may vary across the environment, this covariance can even be
interpreted as a test of costs or benefits of plasticity in the fitness
component. A useful extension, which allows an analysis of
selection on plasticity, is to use a bivariate model combining a
random regression of the focal trait with a basic model of measures
of individual fitness: here, the covariance between trait slopes and
individual fitness represents selection on plasticity (Arnold et al., in

Box 2 Random regression mixed models

We outline here three mixed models to complement Fig. 2. A basic mixed model is:

yij ¼ aþ bxj þ ai þ eij Eqn 1

where yij is the phenotypic trait value of individual ionoccasion j;a andb are fixed effects of the overall intercept (thepopulationmeanphenotype if x is
mean-centred) and slope regression coefficients, respectively; xj is the environment (e.g. temperature) experienced on occasion j (mean-centred for
convenience); and the random effects in the model are ai, the random intercept coefficient for individual i (representing the difference in means
between individuals), and eij, the residual for individual i on occasion j. Mean-centring of the environmental variable xmeans that intercepts a and ai
reflect average values, for the population and individual respectively.
A ‘random regression mixed model’ (RRMM) includes an additional component bi for the random slope of individual i in response to environment x:

yij ¼ aþ bxj þ ai þ bixj þ eij Eqn 2

The fixed components of themodel, the intercept (a) and slope (b), are as above and describe the populationmean reaction norm. The right-hand side
of the equation contains the random regression component, and fits individual-level intercepts (a) and slopes (b). It is important to note that these are
relative to the population-level fixed effects. Hence, if individuals vary in their average trait value but not in their reaction norm shapes, a model of the
form of Eqn 1 would suffice.
RRMMs can incorporate nonlinear functions in either or both the fixed and the random effects, for example:

yij ¼ aþ bxj þ cx2j þ ai þ bixj þ cix
2
j þ eij Eqn 3

where the fixed effect component cx2j describes a quadratic curve for the population-level response and the additional random effect component cix2j
reflects thedifferencebetween individuals in thenonlinear component of their response to the environment, relative to thepopulationmean.However,
a quadratic randomcoefficient canmake covariancematrices difficult to interpret, and it isworth noting that variation among individual reaction norms
relative to the populationmeanmight be adequately describedby a random regression inwhich the randomcomponent is linear, evenwhen the overall
population response is nonlinear (Morrissey& Liefting, 2016). The choice ofwhich formofmodel to use canbeguidedbyAkaike’s information criterion
(AIC) or likelihood-ratio tests of the improvement (or not) on adding further complexity.We direct the reader to Supporting Information Notes S1 for
further information on software resources available, and a few cautionary points on fitting the RRMMs we have outlined, and Notes S2 for a worked
example of fitting and comparing RRMMS. In addition, Zuur et al. (2009) is an excellent resource for further reading on mixed models.
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press; for empirical examples see Hayward et al., 2014; Boulton
et al., 2018). Furthermore, where plasticity in multiple traits has
been measured, a multivariate mixed model can also be used to
analyse plastic responses in several traits, and will return estimates
of covariances between the different traits in both intercepts and
slopes (e.g. Husby et al., 2010).

Plasticitymay be compared amongst different populations of the
same species (e.g. Husby et al., 2010) or amongst different species
(e.g. Gardner et al., 2016). With data on related individuals (e.g.
families or lines), relatedness information can be incorporated in a
mixed model, for example including pedigree information in an
‘animal model’ (which, despite the name, is equally applicable to
plants), to estimate levels of additive genetic variance in the relevant
traits (Kruuk, 2004; Wilson et al., 2010). Extension of the animal
model to include an interaction between the additive genetic effect
and the environmental variable, a random regression animalmodel,
then allows a test forG9 E interactions (Nussey et al., 2007).With
multispecies analyses, phylogenetic information can be included
(Hadfield&Nakagawa, 2010), andmodels can then be extended to
test for a phylogenetic signal in plasticity. This approach is exactly

analogous to estimation of G9 E within a population, but with
species’ phylogeny replacing the population pedigree (e.g. Gardner
et al., 2016).

In addition to investigating whether there is overall variation in
reaction norms, researchers may also want to identify which
genotypes show the most or least plastic response. From the
RRMMoutput, the random regression slope (or higher order terms
if nonlinear random functions are being considered) coefficient for
each genotype can be extracted: these are known as best linear
unbiased predictors, or BLUPs, and can be used to rank which
genotypes are more or less plastic. Such a ranking approach might
be desired for breeding crops that are tolerant to projected changes
in climate (‘climate-ready crops’), for designing restoration and
revegetation strategies, or might feed into investigations of the
evolution and adaptive nature of plasticity in wild species.
However, use of BLUPs for anything beyond ranking should be
done in conjunction with appropriate treatment of their associated
uncertainty, for example within a Bayesian Markov chain Monte
Carlo framework (see Hadfield et al., 2010; Houslay & Wilson,
2017). Finally, there are cautionary points to consider when using
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Fig. 2 Graphical representation of both the overall population average and individual reaction norms of a phenotypic trait value in response to changing
temperaturewhenanalysedwithmixedmodelsof varyingcomplexity. The coremixedmodel contains afixedcomponent that describes thepopulationaverage
reaction norm (black dashed line) and a random component that describes variation in the individual reaction norms (coloured solid lines). Each of the first four
columns represents an increasingly complex fixed component of themixedmodel: (a–c) linear, (d–f) quadratic polynomial, (g–i) sigmoidal and (j–l) generalised
additivemodel (GAM) that describe the population average reaction norm. The final column (m–o) represents the individual reaction norm slopes (the random
component) relative to the mean-centred phenotypic trait value of the population in response to temperature. Each of the three rows represents increasingly
complex scenarios of variance in the randomcomponent of themixedmodel, independently: variation in intercepts (a, d, g, j), variation in slopes (b, e, h, k), and
variation in curvature (aquadratic term; c, f, i, l) amongthe individual reactionnorms. SeeBox 2 formodel formulae, themain text for additional descriptions and
Supporting Information Notes S1–S4 for basis functions, software and a worked example with R code for implementing these models.
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an RRMM approach, including whether statistical power is
sufficient to estimate variance among individual reaction norms
confidently, and whether the mathematical functions necessarily
match biological function.We expand on these points inNotes S1.

IV. Conclusions

To date, plant biologists have seldom used RRMMs for
measuring variation in reaction norms in studies of phenotypic
plasticity. We suggest here that a RRMM approach offers an
efficient, powerful, statistically appropriate and broadly appli-
cable way both of analysing nonlinear population-level plasticity
and of characterising variation in reaction norm shapes. It also
has huge potential for extension, for example to include
multivariate responses, multiple environmental variables, and
quantitative genetic or comparative analyses. There are prospec-
tive benefits not only for our fundamental understanding of the
genetic basis and evolution of plant phenotypic plasticity in a
changing climate, but also application to breeding climate-ready
crops and management of natural systems.
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