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 Sankhya : The Indian Journal of Statistics
 1995, Volume 57, Series B, Pt. 2, pp. 200-222

 RANDOMIZATION TESTS TO COMPARE MEANS WITH
 UNEQUAL VARIATION

 By BRYAN F. J. MANLY
 University of Otago

 SUMMARY. A randomization framework for testing for significant differences between the

 means of two or more samples is proposed for the situation where the samples may be from distribu

 tions with different variances. This framework is based on the concept that the observed data arise

 from a random allocation of a fixed set of values to the samples, followed by linear transformations

 that are not necessarily the same for each sample. The null hypothesis is that, with respect to

 the distributions generated by the random allocation, the expected values of the sample means are

 equal but the expected values of the sample variances may or may not be equal.

 The model leads in an obvious way to a randomization test that is exact if the parameters for

 the linear transformations are known. When these parameters are not known (as is usually the

 case) three algorithms for approximate randomization tests are proposed. The properties of these

 algorithms have been studied by simulation in comparison with Welch's test, the usual randomiza

 tion F-test, and the usual F-test using tables. It has been found that two of the three algorithms

 for approximate randomization tests have better properties than the other four tests when the null

 hypothesis is true, for data from uniform and normal distributions. None of the tests perform

 well with data from exponential distributions, but one of the approximate randomization tests is

 superior to all of the other tests under most of the conditions simulated.

 1. Introduction

 The usual randomization test for a significant difference between the mean
 values of two samples involves comparing the observed mean difference with
 the distribution generated by randomly allocating the data values to the two
 samples JF2 ? 1 times. The observed mean difference is then declared to be
 significant at the 100a% level on a two-sided test if the absolute value of this
 difference is among the largest 100a% of the R absolute differences consisting
 of that from the observed data and those obtained by randomization (Fisher,
 1936; Manly, 1991, p. 49).

 AMS (1990) subject classification. 62G09.
 Key words and phrases. Computer intensive statistics, permutation test, Behrens?Fisher problem,

 comparison of means, analysis of variance.
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 TESTS TO COMPARE MEANS WITH UNEQUAL VARIATION 201

 The null hypothesis for this test is that the data values observed were ran
 domly allocated to the two samples, either as a result of an experimental ma
 nipulation or because the two samples came from the same source, and the test
 statistic is chosen to be sensitive to alternative hypotheses that lead to one
 sample tending to contain larger values than the other. With small samples the
 observed test statistic can be compared with the full randomization distribution.
 This becomes impractical with moderate to large sample sizes but an exact test
 is still possible if the observed test statistic is compared with a sample from the
 randomization distribution (Dwass, 1957). 'Exact' here is in the sense of having
 the correct size when the null hypothesis is true, although the outcome of a test
 will depend on the finite set of randomizations used.

 Randomization methods can also be used to compare the means of more
 than two samples. One way to do this is to compute the F-value from a one
 factor analysis of variance, and compare this with R ? 1 alternative F-values,
 each of which is obtained by randomly allocating the observed data values to
 the samples. The F-value for the sample data is then significant at the 100ct%
 level if it is among the largest 100a% of the set of F-values consisting of itself
 and the R? 1 randomized values. Again this is an exact test because it has the
 correct size when the null hypothesis is true (Manly, 1991, p. 64).

 Randomization tests have much to commend them as alternatives to stan

 dard parametric and non-parametric tests because they (a) do not require any
 particular assumptions about the distribution of the variable being tested; (b)
 use the original data values rather than just their ranks; and (c) have no diffi
 culty with handling tied data values (Edgington, 1987; Manly, 1991). Further
 more, the primitive argument behind a randomization test is easily understood
 and convincing to those not familiar with statistical methods. For this reason,
 randomization tests should find favour in environmental applications where lack
 of assumptions and simplicity are key considerations.

 However, a source of concern for some users of randomization tests to com
 pare the means of two or more samples is the fact that the probability of a
 significant result on a test at the 100a% level may not equal a if the samples
 being considered are drawn from distributions with the same mean values but
 differing in some other respect. In particular it is known that randomization
 tests are not necessarily robust if the samples come from sources with the same

 mean values but different amounts of variation (Boik, 1987).
 The comparison of the means of two samples that may come from popula

 tions with unequal variances has a long history under the name of the 'Behrens
 Fisher problem'. Many solutions have been proposed over the years, including
 those of Behrens (1929) and Fisher (1939) themselves, and the alternatives of

 Welch (1937), James (1954), Barnard (1984), Cressie and Whitford (1986), Be
 ran (1988), Schemper (1989), and Asiribo and Gurland (1989). The problem of
 comparing several means has also received much attention, with solutions being
 proposed by James (1951, 1954), Welch (1951), Brownie et al. (1990), Fisher
 and Hall (1990), and Shiraishi (1993), among others.
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 202  BRYAN F. J. MANLY

 In this note a variation of the usual randomization test to compare two or
 more sample means is proposed that overcomes the problem of unequal popu
 lation variances to a large extent. It involves assuming that the observations
 in the samples come from a random allocation of a fixed initial set of values
 to the samples, followed by unknown linear transformations of the observations
 in the different samples. The null hypothesis tested is that for the initial set
 of values the linear transformations do not change the expected values of the
 sample means with respect to the randomization distribution, although they
 may change the sample variances.

 To be more precise, it is assumed that when the null hypothesis is true the
 observations that are available arose from a mechanism that is effectively as
 follows:

 (a) fixed values iii, U2,..., un with mean // = Eui/n and variance Var(l7) =
 E(uj ? ?.i)2/n = 1 are assigned at random to s samples with sizes rii, 712,..., ns,
 such that ni + Ti2 4- + ns = n; and

 (b) the observations 2,1, x?2) ?^m? in the i-th sample are obtained by a
 linear transformation X = Ax?4- B{U of the U values assigned to this sample
 that is not expected to change the sample mean but may be expected to change
 the sample variance.

 Assuming that this is the case, the essential idea for a randomization test is
 that a test statistic should be used that makes an allowance for the possibility of
 variance changes, and the observed values of this statistic should be compared
 with the distribution that is generated by the random assignment at step (a).
 Because there is not enough information to do this exactly, some approxima
 tions to this ideal procedure are proposed and investigated. However, before
 considering these approximations it is useful to consider an exact test.

 2. AN EXACT RANDOMIZATION TEST

 In order for the transformation X = Ai -f BiU that is applied for the i-th
 sample to not be expected to change the mean with respect to the randomization
 distribution it is necessary that E(X) = // = Ai 4- B^i. Hence

 Al = fi(l-Bt). ...(2.1)
 The transformation from U to X for the i-th sample must therefore have the
 form

 X = /i+ 5^-/1), ...(2.2)
 and the reverse transformation must have the form

 C7 = /? + (X-/?)/B?.  ...(2.3)
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 TESTS TO COMPARE MEANS WITH UNEQUAL VARIATION 203

 Furthermore, using the definition /x = Eu,/n together with the last equation
 shows that

 s s

 H = Y,(nix,/Bl)/Y/(n,/B,) ...(2.4)
 1=1 1=1

 holds exactly, where xl is the observed mean for sample i.
 It follows that if B\, B2,..., Bs are known then an exact randomization test

 can be carried out by using equations (2.3) and (2.4) to convert the observed
 X values back to U values, and applying the test to the untransformed data.
 There are various ways in which this might be done (Manly, 1991, Chapter 4).
 An obvious possibility is to compare the F value from a one factor analysis of
 variance on the U values with the distribution of F values obtained by randomly
 allocating the same U values to the s samples.

 3. Three approximate randomization tests
 when bt values are unknown

 In reality B{ will usually not be known. However, one way to estimate it is
 by using the variance of the i-th sample, so that

 ^ = ?(xy-x02/(n?-l). -..(3.1)
 The test based on estimating B{ from this equation, untransforming the observed
 data using equation (2.3), and then carrying out a randomization F-test on the
 untransformed data will be referred to as Test 1.

 Another method for estimating the Bt values is based on the condition that
 Var(U) = 1. This gives the exact equation

 s n,

 1 = 1 j=\

 where ix^ = /.i 4- (x^ ? /.i)/Bi is the j-th U value that is randomly assigned to
 sample i. This implies that

 S Hi

 t'=l >=1

 exactly, and that with respect to the randomization distribution

 n?
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 204  BRYAN F. J. MANLY

 It follows that

 B^ = E{J2(xl3-?)2/nt}

 which shows that an estimate B{ of B{ can be obtained by solving the set of
 equations

 {?(x,,-ftVn,}, (3.2) \ ?=i
 for i = 1,2,..., s, together with

 s s

 Ti = J^iniXi/Bi)/ $>,/?,), (3.3)
 1=1 1=1

 based on equation (2.4).
 Equations (3.2) and (3.3) can be solved iteratively by starting with B% = 1

 and successively applying equation (3.3), followed by equations (3.2), followed
 by equation (3.3), etc. This process has always converged with simulated and
 real data.

 On the basis of these equations the following approximate randomization
 procedure can be applied:

 (a) estimate Bi,B>?,..., Bs and // using equations (3.2) and (3.3);
 (b) calculate estimates of the U values using Uij = ??4- (xlj ? /?)/f??;
 (c) carry out a one factor analysis of variance to find Fj, the ratio of the

 between sample mean square to the within sample mean square for the estimated
 U values;

 (d) randomly reallocate the estimated U values to the samples and calculate
 F2, the test statistic for the modified data;

 (e) repeat step (d) R ? 1 times to generate further values F3, F4,..., Fr from
 the randomization distribution of the test statistic; and

 (f) declare F\ to be significantly large at the 100a% level if it is larger than
 100 (1 - a)% of the set of values F}, F2,..., FR.

 The hope is that this approximate test will give a probability of approxi
 mately a of yielding a significant result when in fact the U values for the real
 data are randomly allocated to samples. It will be referred to as Test 2.

 An alternative test that will be called Test 3 also suggests itself. This is still
 based on equations (3.2) and (3.3), but includes the following modified version
 of step (d) in the algorithm:

 (d!) randomly reallocate the estimated [/ values to the samples, transform
 them to X values using equation (2.2) with the estimated values for B\,B2,
 ..., Bs and // obtained from the real data, solve equations (3.2) and (3.3)
 for these X values, untransform the X values using the new estimates of
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 TESTS TO COMPARE MEANS WITH UNEQUAL VARIATION 205

 f?i, jE?2, ..., Bs and a to produce new U values, and calculate the test statistic
 for these U values.

 This makes the algorithm more complicated and computer intensive, but
 it does have the merit of repeating on the randomized data exactly the same
 analysis as was carried out on the original data. It appears, therefore, that it
 may better capture the variation in F-values due to the process of estimating
 the B and // values.

 Note that when there are two samples of the same size a little algebra shows
 that equations (3.1) and (3.2) give exactly the same estimated Bi values. Thus
 Test 1 and Test 2 are the same under these conditions.

 4. Simulation experiment 1

 The small sample performance of Tests 1 to 3 has been examined by a sim
 ulation study. At the same time the opportunity has been taken of comparing
 the properties of these tests with three other tests for a difference between two

 sample means: Test 4 is Welch's (1951) test; Test 5 involves assessing the ob
 served F-ratio by comparison with the distribution obtained from randomly
 reallocating the observations to samples (Manly, 1991, p. 64); and Test 6 in
 volves assessing the significance of the observed F-ratio using tables. Test 4
 makes an allowance for unequal sample variances, but Test 5 and Test 6 assume
 that this does not occur. The randomization tests do not make the assumption
 that data are normally distributed. The other tests do make this assumption.

 The simulation was in two parts. The first part, which is considered in
 this section, involved data with two samples only. The second part, which is
 considered in the next section, involved four samples.

 For the two sample simulations a four factor experimental design was used
 with the following factor levels :

 (A) Sample sizes (nun2) were (12,4), (8,8), (24,8), or (16,16).
 (B) Data were generated independently for the two samples from the uniform

 distribution, the normal distribution, or the exponential distribution, scaled in
 each case so that the mean and variance were 0 and 1. The n2 values in the
 second sample were then subjected to a linear transformation to give the mean
 and variance with respect to the randomization distribution that were required
 by the levels of factors C and D.

 (C) The mean of the second sample with respect to the randomization dis
 tribution was 0, 0.5, or 1.

 (D) The standard deviation of the second sample with respect to the ran
 domization distribution (f?2) was 0.125, 0.25, 0.5, 1, 2, 4 or 8.

 For each combination of the factor levels 500 independent sets of data were
 generated. Tests to compare the two sample means were then carried out at the
 5% level for each of the six tests being considered. For the randomization tests,
 999 randomizations were carried out.
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 206  BRYAN F. J. MANLY

 In order to generate simulated sets of data, values from the uniform dis
 tribution between 0 and 1 were generated using Wichmann and Hill's (1982)
 algorithm. These were then used directly for the first level of factor B, sums of
 12 values were used for generating normal variables, and the transformation U
 = - l?9(i(R) was used for generating exponential variables.

 The percentages of significant results obtained from the simulations are
 recorded in Table 1. For help in comparing the six tests, cases where the results
 can be considered to be satisfactory are outlined. For example, when the sample
 sizes were n\ = 12 and ri2 = 4, with data from uniform distributions, only Test
 2 and Test 3 are outlined as being satisfactory.

 'Satisfactory' in this context is with respect to the behaviour of the tests
 when the null hypothesis /xi = /x2 is true. With 500 sets of simulated data,
 binomial sampling errors are such that if the probability of a significant result
 is 0.05 for each set then the overall percentage of significant results from a test

 will be approximately normally distributed with a mean of 5% and a standard
 error 1%. Therefore, with a probabilty of about 0.99 the observed percentage of
 significant results will lie within the range 5 ? 2.58 (1), or about 2.4% to 7.6%.
 On this basis it is reasonable to consider the range from 2% to 8% to be the
 maximum that is acceptable from simulation results, with percentages rounded
 to the nearest integer. It is for this reason that Test 2 and Test 3 are outlined
 with samples sizes of 12 and 4 and uniform data: for both tests the percentage
 of significant results ranges from 4% to 7% with the null hypothesis true. The
 other tests give percentages that are either less than 2% or more than 8%. For
 example, Test 6 gives from 0% to 25% significant results, which is completely
 unsatisfactory.

 Table 1 shows that Test 2 and Test 3 have given performances with uniform
 and normal data, but the same cannot be said of the other four tests. With
 exponential data none of the tests has been very good: with unequal sample
 sizes Test 2 and Test 3 give the best performance, but Tests 4, 5 and 6 are better
 with equal sizes.

 The results overall can be summarised as follows:
 (a) If sample sizes are quite different, then Test 2 or Test 3 should be used,

 although these will tend to give too many significant results with exponential
 types of distributions.

 (b) If sample sizes are equal then the best test depends on the nature of
 the data. With uniform or normal data Tests 1, 2 and 3 are best, but with
 exponential data Tests 4, 5 and 6 are better.

 5. Simulation experiment 2

 In order to examine the performance of the approximate randomization tests
 in situations with more than two samples, a second simulation experiment with
 a factorial design has been carried out, involving the comparison of the means
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 TESTS TO COMPARE MEANS WITH UNEQUAL VARIATION 207

 of four samples. The factors considered were:

 (A) Sample sizes were (8,6,4,2), (5,5,5,5), (12,10,8,6), (9,9,9,9), (16,14,12,10)
 or (13,13,13,13), for samples 1 to 4, in order.

 (B) Data values were generated from the uniform, normal or exponential
 distribution.

 (C) Sample means were (0,0,0,0), (0,0.25,0.5,1), or (0,0.5,1,2), for samples 1
 to 4, in order.

 (D) Sample standard deviations were (1,0.5,0.25,0.125), (1,1,0.5,0.25),
 (1,1,1,1), (1,1,2,4) or (1,2,4,8) for samples 1 to 4, in order, where these standard
 deviations correspond to the values B\ to B4 for the randomization model that
 has been described in Section 1.

 For each of the 6x3x3x5 = 270 combinations of the levels of the four factors,
 500 sets of four sample data were generated. Each set was then tested for a
 significant difference between the sample means using Tests 1 to 6 as with the
 first simulation experiment. In all cases the 5% level of significance was used.
 For the randomization tests 999 randomizations were carried out.

 The results of the simulation experiment are summarised in Table 2, which
 shows the percentage of significant results obtained for each of the six tests, for
 each of the combinations of factor levels. In addition, for each of the six levels
 of sample sizes and each of the three distributions the tests with satisfactory
 behaviour when the null hypothesis is true (between 2% and 8% significant
 results, inclusive) are indicated by being outlined in the table, in the same way
 as was done with Table 1.

 With uniformly distributed data Test 1 was never satisfactory, Test 2 and
 Test 3 were always satisfactory, Test 4 was satisfactory except with the smallest
 sample sizes, Test 5 was never satisfactory, and Test 6 was only satisfactory with
 sample sizes of (13,13,13,13). Test 2 and Test 3 had quite similar behaviour but,
 if anything, Test 3 has shown slightly more power when the null hypothesis was
 not true.

 None of the tests performed very well with exponentially distributed data.
 However, inspection of the results shows that Test 2 and Test 3 generally per
 formed better than the other tests when sample sizes were equal. Both Test 2
 and Test 3 have a tendency to produce too many significant results when the
 null hypothesis is true but, if anything, Test 3 gives slightly better results in
 this respect.

 6. Example

 The simulations suggest that Test 3 is the most reliable of those that have
 been compared in the situation where samples may have unequal variances and
 observations are from an unknown distribution that is likely to be quite non
 normal.
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 208 BRYAN F. J. MANLY

 As an example of the practical use of this test, consider the example used
 by Welch (1951). This involves three samples, with sizes n\ = 20, ri2 = 10 and
 713 = 10. The sample means are x\ = 27.8, x~2 = 24.1 and x? = 22.2, and the
 sample variances are s\ = 60.1, s\ = 6.3 and s\ = 15.4. Welch shows that his
 test (Test 4 in the simulations) leads to the comparison of the statistic 3.35 with
 the F-distribution table with 2 and 22.6 degrees of freedom, corresponding to a
 p-value of 0.053. Hence, the test is not quite significant at the 5% level.

 Test 3 can only be carried out when the individual observations in the data
 are known. However, these were not provided by Welch in his paper. To demon
 strate Test 3 the following data were therefore generated on a computer from a
 normal distribution and scaled to give the sample means and standard devia
 tions quoted by Welch:

 Sample 1. 32.0 29.6 23.5 29.5 22.8 25.3 26.7 18.0 33.0 17.7 24.8 24.3 21.6
 15.2 25.5 40.9 27.6 34.0 41.0 43.1

 Sample 2. 25.5 25.4 26.9 19.7 28.0 21.9 22.2 24.1 24.6 22.8
 Sample 3. 24.7 22.7 28.4 20.9 13.4 20.8 23.8 21.5 20.6 25.1

 Solving equations (3.2) and (3.3) with these data gives the estimates B\ ? 8.18,
 ?2 = 2.44, and B3 = 4.49, with Ji = 24.65. The estimated untransformed U
 values based on equation (2.3) are then as shown below:

 Sample 1. 25.55 25.26 24.51 25.24 24.43 24.73 24.90 23.84 25.67 23.80 24.67
 24.61 24.28 23.50 24.76 26.64 25.01 25.79 26.65 26.91

 Sample 2. 25.00 24.96 25.57 22.62 26.02 23.52 23.65 24.43 24.63 23.89
 Sample 3. 24.66 24.22 25.49 23.82 22.15 23.79 24.46 23.95 23.75 24.75

 An analysis of variance gives an F-ratio of Fj = 3.58.
 Carrying out 99,999 randomizations of these estimated U values for Test 3

 resulted in 3.0% of values greater than or equal to 3.58 in the set of 100,000
 F-values comprising the one for the real data and those from the randomized
 sets of data. The test therefore gives a result that is significant at the 3.0%
 level, and there is slightly more evidence for a difference between the means for
 this test than is obtained from Welch's test.

 Of course, there is no reason why Welch's test and the randomization test
 should give quite the same level of significance. There is therefore nothing that
 needs to be said about the difference of about 2%. If anything, the simulation
 results suggest that with the unequal and moderate sample sizes being consid
 ered the two tests both have reasonable performance except with highly skewed
 distributions like the exponential.

 A question of some interest is the extent to which the distribution of obser
 vations affects the significance level for the randomization test for given sample
 means and standard deviations. This has been investigated briefly in the context
 of the example just considered, by generating data from a range of different dis
 tributions as well as normal. The significance levels obtained from Test 3 with
 99,999 randomizations were found to be as follows: uniform, 3.6%, triangular,
 3.3%, normal, 3.0%, chi-squared with 4 degrees of freedom, 3.3%; exponential,
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 TESTS TO COMPARE MEANS WITH UNEQUAL VARIATION 209

 3.8%; chi-squared with 1 degree of freedom, 4.6%. Sampling errors (99% con
 fidence limits) are in each case within the range of the obtained percentage ?
 0.1%. It does therefore appear that the distribution of the data has a small
 impact on the significance level.

 7. Conclusion

 Overall the simulation experiments indicates that Test 3 (as defined in Sec
 tion 3) tends to have properties that are as good as or better than the other
 five tests for situations where data come from an unknown distribution and

 the expected values of sample variances may differ in unpredictable directions.
 However, with exponentially distributed data this test has a clear tendency to
 give too many significant results when the null hypothesis is true.

 In essence, the simulation results suggest that for normally distributed data
 Test 3 solves the problem of comparing the means of two or more samples
 with possibly different variances, even with sample sizes that are quite small.
 This test has some robustness against non-normality but it appears that the
 probability of a significant result will be somewhat too high when the null
 hypothesis is true but the data are from highly skewed distributions like the
 exponential.

 Further simulation studies are needed to examine the performance of Test 3
 compared to alternatives under a wider range of conditions. These are planned
 in the near future.
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 210  BRYAN F. J. MANLY

 TABLE 1. RESULTS FROM SIMULATION STUDY 1 TO COMPARE SIX TESTS FOR A
 SIGNIFICANT DIFFERENCE BETWEEN TWO SAMPLE MEANS

 THE OUTLINES SHOW THE TESTS WITH SATISFACTORY BEHAVIOUR WHEN THE
 NULL HYPOTHESIS IS TRUE

 Sample fixe
 I 2

 Sample mean Sample SD
 12 12

 Uniform data
 o Significant result* from Teiti
 2 3 4 5

 0.125
 0.25
 0.5

 0.1 i5
 0.25
 0.5

 0.125
 0.25

 0.125
 0.25

 0.125
 0 25

 0.125
 0.25
 05
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 Table 1 (Continued)

 Uniform data
 % Significant multa from Tfc*t?
 2 3 4 5

 Sample me Sample mean Sample SO

 0 125
 0 25
 0.5

 0.125
 0.25
 0.5

 0.125
 0.25

 0.125
 0.25
 0.5

 0.125
 0.?5

 0.125
 0.25
 0.5

 100
 100

 37
 24
 13
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 Table 1 (Continued)

 Sample litt Sample mean
 Normal data

 % Significant rwultt from Tertt
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 Table 1 (Continued)

 Sample >iie_Sample mean
 Normal data

 % Significant retulti from TeaU

 0.125
 0.25
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 214  BRYAN F. J. MANLY

 Exponential data
 % Significant remit? from TVrtt

 0125
 0 25

 2
 4
 8

 0125
 025
 0.5
 I
 2
 4
 8

 0 125
 0.25
 0.5
 I
 2

 6
 10
 7
 13
 IS
 15
 17
 61
 43
 25
 9
 13

 100
 100
 80
 35
 12
 11
 12

 9
 10
 11
 10
 49
 24
 10
 2
 8

 11
 10

 9
 5
 7

 100
 95
 40

 28
 13
 3
 9

 2
 6
 14
 24
 31
 9
 13
 13
 12
 18
 22

 31
 35
 25

 2
 6
 14
 23
 29
 10
 13
 13
 12
 15
 22
 32
 32
 34
 31
 34
 22
 22
 26

 0.125
 0.25
 0.5

 8
 0.125
 0.25

 0.125
 0.25

 9
 9
 39

 83
 72
 63

 9
 9
 39
 36
 28
 13

 6

 [ 27 30
 1 26
 10

 j 61 ! 55

 29
 32
 28
 13
 8
 4
 6

 29
 32
 27
 11
 6
 4
 5
 67
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 Table 1 (Continued)

 Exponential data
 % Significant remit? from Tertt Sample ?iae Sample mean Sample SD

 0 125
 0.25
 0.5

 8
 0.125
 0.25
 0.5

 1

 0.125
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 TABLE 2. RESULTS FROM SIMULATION STUDY 2 TO COMPARE SIX TESTS FOR A
 SIGNIFICANT DIFFERENCE BETWEEN FOUR SAMPLE MEANS

 THE OUTLINES SHOW THE TESTS WITH SATISFACTORY BEHAVIOUR WHEN THE
 NULL HYPOTHESIS IS TRUE.

 Uniform data
 % Significant resulta from Teat?
 2 3 4 S

 4 6 4 2
 3 6 6 3

 Sample aise
 2 3

 Sample mean
 2 3

 8 6 4 2 0 0 00

 0 0.25 OS

 0 0.5 12

 5 5 5 5 0 0 00

 0 0.25 OS

 0 05 12

 12 10 8 6 0 0 0 0

 0 0 25 0.5 1

 0 0.5 12

 56
 55

 61
 20

 100
 98
 74
 24
 13

 5
 94

 64
 21
 10
 6
 100
 99
 78
 26
 13

 83
 35
 17
 15
 18
 100
 94
 33
 18
 18

 6
 98
 42
 16

 100
 100
 52
 13

 100
 93
 28
 9
 7
 100
 100
 87
 21
 10

 9
 7
 12
 39
 39
 82

 47
 26
 20

 95
 66
 20
 9

 3
 S
 5
 15
 16
 64
 35
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 24
 22
 100
 100
 92
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 27
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 10
 10
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 Ifcble 2 (Continued)

 Uniform data
 % Significant recuite from Tette
 2 3 4 5

 Sample mean
 2 3

 999900 00

 0 0.25 0.5 1

 0 05 12

 16 14 12 10 0 0 0 0

 0 0.25 0.5 1 1

 0 0.5 1

 13 13 13 13 00 0

 0 0.25 0.5
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 0.25

 8
 0 125
 0.25

 0.125
 0.25

 0 125
 025

 0.125
 0.125

 0125
 025

 0.125
 0.25

 0.125
 0.25

 0.125
 0.25

This content downloaded from 
�������������129.215.83.62 on Thu, 06 Oct 2022 13:03:47 UTC������������� 

All use subject to https://about.jstor.org/terms



 218  BRYAN F. J. MANLY

 Table 2 (Continued)

 Sample ?se Sample mean
 12 3 4 1 2 3 4

 86420 0 00

 Normal data
 % Significant reaurU from leita

 0 0.25 0.5 1

 0 0.5 12

 5 5550 0 00

 0 0.25 0.5 I
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 12 10 8 6 0 0 0 0

 0 0.25 0.5 1

 0 0.5 12

 0 125
 0.25

 0.125
 0.25

 0.125
 0.25

 0 125
 0.25

 0.125
 0.25

 0.125
 0.25

 0.125
 0.25

 0.125
 0.25

 1

 0.125
 0.25

 36
 12

 31
 17
 11

 69
 36
 31
 22
 19
 100
 100
 92

This content downloaded from 
�������������129.215.83.62 on Thu, 06 Oct 2022 13:03:47 UTC������������� 

All use subject to https://about.jstor.org/terms



 TESTS TO COMPARE MEANS WITH UNEQUAL VARIATION 219

 Table 2 (Continued)

 Sample aise
 2 3

 Sample mean
 2 3

 Normal data
 % Significant reiulti from Teati
 2 3 4 5

 999900 00
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 Table 2 (Continued)

 Exponential data
 % Significant reaulta from Testa
 2 3 4 5

 Sample aise
 2 3

 Sample mean
 2 3

 Sample SD
 2 3
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 Table 2 (Continued)

 ""?""* Exponential data
 % Significant reiulte Prom Tort?
 2 3 4 S

 Sample ?se
 1 2 3

 Sample mean
 2 3

 Sample SD
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