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Randomization tests are often advocated as an alterna-
tive data analysis method when assumptions of

more commonly used inferential statistical procedures
are violated (e.g. Edgington 1966; Wampold & Worsham
1986; Blair & Karniski 1993; May & Hunter 1993; Adams
& Anthony 1996; Thomas & Poulin 1997). Unlike para-
metric tests, like Student’s t test and the traditional
analysis of variance (ANOVA) that rely on a mathemati-
cally known but assumption-constrained sampling
distribution to derive probabilities, randomization tests
generate probabilities by repeated ‘resampling’ of the data
and evaluating the obtained result with reference to an
empirically derived distribution, called the randomiz-
ation distribution. This procedure allows the investigator
to relax one assumption that can in some contexts invali-
date tests on group means such as the t test and ANOVA:
the assumption of normally distributed parent popula-
tions. However, in contrast to the statement made by
Adams & Anthony (1996, page 734), and later reinforced
by Thomas & Poulin (1997), randomization tests do not
necessarily allow one to relax the assumption of condi-
tional equality of population variances (often called
‘homoscedasticity’) when the hypothesis of interest con-
cerns mean differences. Here, I provide results from a
series of simulations showing that when the population
variances differ, the use of a randomization test described
by Adams & Anthony (1996) to compare group mean
differences (using either the mean difference in the two-
group case or related statistics such as the treatment sum
of squares in the general case) often falsely rejects a true
null hypothesis at a rate sometimes far greater than the
level of significance chosen for the test.

Because there are a number of existing articles and
books that describe in considerable detail the randomiz-
ation test procedure, Adams & Anthony (1996) and
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Thomas & Poulin (1997) among them, only a brief
introduction to the logic and computation of randomiz-
ation tests is presented here. For more detail, see, for
example, Noreen (1989), Manly (1991), May & Hunter
(1993) or Edgington (1995).

Classical tests based on the normal theory model derive
P values by comparing an obtained test statistic (such as t
or F) to the sampling distribution of that statistic when
the null hypothesis is true. If the obtained result yields a
small P value, this means that assuming the null hypoth-
esis is true, the obtained result or one more discrepant
from the null hypothesis is a rather unlikely event. This
leads the researcher to reject the null hypothesis as a
reasonable description of ‘reality’ in favour of the alter-
native hypothesis. The appropriate use of the sampling
distribution requires that the assumptions inherent in the
mathematics that generate it are at least approximately
met. When these assumptions are violated, the sampling
distribution (such as the t or F distribution) may not
accurately reflect the realm of possible results assuming a
null hypothesis is true, and a decision error can result.

Randomization tests are conceptually identical, but
they differ from tests based on the normal theory model
in how the P value is computed. Instead of relying on a
mathematically defined but assumption-constrained
sampling distribution, P values are derived empirically by
a form of ‘resampling’ of the data without replacement.
The obtained result is quantified in some fashion with a
test statistic sensitive to the hypothesis of interest. The
obtained scores on the dependent variable are then
randomly reassigned to groups and the test statistic com-
puted in this new ‘sample’. Repeated many times, it is
possible to determine how frequently a random reassign-
ment of the observed scores to groups yields a result equal
to or more extreme from the null hypothesis than the
originally obtained result. This frequency divided by the
total number of times this reassignment procedure is
undertaken (ideally, 5000 or more times) gives the P value
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for the obtained result. If P≤�, the null hypothesis can be
rejected. While this might seem like a computationally
impractical procedure, there are many statistical pro-
grams available that can conduct randomization tests,
some of which are in the public domain (see e.g. May
et al. 1993; Hayes 1996b, 1998).

However, the use of a randomization test does not
necessarily mean that we can relax all assumptions when
comparing group means. The procedure that Adams &
Anthony (1996) describe allows us to relax only the
normality assumption inherent in many tests based on
the normal theory model. Importantly, when the groups
are originally sampled from populations with differ-
ent variances, the procedure they describe can yield a
liberal test, meaning that it will falsely reject a true null
hypothesis at a rate greater than �.
Table 1. Type I error rates for the randomization test when sampling from a normal population

Sample
size n1 n2

Group 1–Group 2 population variance ratio

1:10 1:4 1:2 1:1 2:1 4:1 10:1

40 5 35 <0.001 0.003 0.012 0.048 0.120 0.231 0.358
10 30 0.002 0.010 0.020 0.052 0.090 0.153 0.224
20 20 0.054 0.056 0.052 0.048 0.049 0.055 0.054

80 10 70 <0.001 0.002 0.010 0.047 0.141 0.235 0.346
20 60 0.004 0.010 0.023 0.050 0.093 0.150 0.221
40 40 0.049 0.050 0.051 0.052 0.052 0.048 0.048

160 20 140 <0.001 0.002 0.011 0.049 0.130 0.231 0.344
40 120 0.002 0.010 0.022 0.053 0.092 0.148 0.210
80 80 0.054 0.048 0.049 0.052 0.052 0.049 0.050

Note: 5000 randomizations per sample and 5000 replications.
Heteroscedasticity and the Performance of the
Randomization Test: Monte Carlo Results

There are mathematical arguments that show that a
randomization test can be invalid when the population
variances are unequal (e.g. Box & Anderson 1955), but
these arguments are largely technical and not especially
convincing to the nonmathematician. To illustrate this
point differently, we used a set of Monte Carlo studies.
The simulations were conducted using the GAUSS pro-
gram (Aptech Systems 1997). In all, 126 simulations were
conducted in a design which orthogonally manipulated
four variables: total sample size (three levels: 40, 80, 160)
group 1 to group 2 sample size ratio (three levels: 1:1, 1:3,
1:7), group 1 to group 2 population variance ratio (seven
levels: 1:10, 1:4, 1:2, 1:1, 2:1, 4:1, 10:1), and population
distribution shape (two levels: normal and exponential).
In all simulations, the null hypothesis �1=�2 was true. In
each simulation, two random samples of sizes n1 and n2

were taken from a population with a mean of zero that
was distributed as either normal or exponential (an
extremely skewed distribution). The normal samples were
generated with the GAUSS rndn function, and the expo-
nential samples were generated with the function Y= �ln
(U), where U is a random uniform variate generated with
the rdnu function (Ross 1989). To simulate differences in
population variance, each score in group 1 was multiplied
by the square root of v, where v equalled either 0.1, 0.25,
0.5, 1, 2, 4 or 10, depending on the amount of variance
inequality desired for that condition. (When the scores in
a population are multiplied by a constant, the variance of
the population increases by the square of the constant.)
In each simulation, the test statistic used to quantify the
obtained result was the sum-of-squares treatment (SSt), as
used in Adams & Anthony (1996). The sum-of-squares
treatment is an equivalent test statistic to F and t or the
mean difference in the two group case (Edgington 1995).
Thus, the results generalize to the use of these test
statistics as well. After SSt was computed, the obtained
scores were randomly reassigned to different groups and
SSt recomputed. Over 5000 randomizations, the P value
for that repetition was then computed as the number of
times that SSt in a resample equalled or exceeded SSt in
the original sample. In reality, only 4999 randomizations
were actually undertaken because the original data is
considered a randomization and should be used in the
computation of the P value (cf. Ongenha & May 1995).
This entire procedure was itself repeated 5000 times in
each of the 126 conditions. The type I error rate was
computed in each condition as the proportion of times
that the randomization test yielded as P value equal to or
less than 0.05.

Tables 1 and 2 give the results from the simulations.
There are four notable findings. First, when the groups
had equal population variances, the randomization test
was valid, yielding a type I error rate near 0.05 regardless
of whether the population shape was normal or exponen-
tial. This reflects the fact that randomization tests, unlike
normal theory tests, require no assumptions about distri-
bution shape. Second, so long as the sample sizes were
equal, type I errors were kept in control, or nearly so,
regardless of whether the population variances were equal
or different. Third, the combination of sample-size
inequality and variance inequality produced a test that
was either liberal or conservative. When the larger group
had the larger variance, the randomization test was actu-
ally conservative, meaning that the computed P value was
too large and therefore the probability of false rejection
smaller than the alpha level. However, when the smaller
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group had the larger variance, the randomization test was
invalid, in many cases with actual type I error rates
substantially higher than 0.05 when �=0.05 is used.
Fourth, this invalidity was not influenced by absolute
sample size (n1+n2). Whether the absolute sample size
was large or small, type I error rates were inflated when
the smaller group was sampled from a population with a
larger variance.
Table 2. Type I error rates for the randomization test when sampling from an exponential population

Sample
size n1 n2

Group 1–Group 2 population variance ratio

1:10 1:4 1:2 1:1 2:1 4:1 10:1

40 5 35 0.007 0.012 0.021 0.050 0.116 0.224 0.354
10 30 0.015 0.020 0.029 0.049 0.110 0.163 0.254
20 20 0.085 0.063 0.058 0.048 0.048 0.064 0.080

80 10 70 0.002 0.006 0.020 0.045 0.134 0.239 0.349
20 60 0.008 0.017 0.021 0.053 0.096 0.168 0.227
40 40 0.067 0.057 0.055 0.052 0.050 0.059 0.067

160 20 140 0.001 0.006 0.015 0.053 0.130 0.233 0.354
40 120 0.005 0.011 0.022 0.048 0.102 0.157 0.218
80 80 0.062 0.056 0.056 0.053 0.054 0.050 0.059

Note: 5000 randomizations per sample and 5000 replications.
Discussion

Tests based on data permutation require an assumption
called ‘exchangeability’. Exchangeability is very similar to
the assumption known to behavioural scientists as the
assumption of independently and identically distributed
variables, or IID (see for example Draper et al. 1993).
When two or more means are being compared, we must
assume that deviations between scores and the overall
mean are distributed independently and identically
across groups (and in many cases, that those discrepan-
cies follow a normal distribution) in order to apply many
of the commonly used hypothesis-testing procedures.
The randomization test also requires this assumption
because in order to compute the P value using this
procedure, we have to assume that any random reassign-
ment of scores to groups was as likely to have been the
obtained result as any other reassignment if the null
hypothesis is true. If the scores are independently and
identically distributed across groups, and therefore
exchangeable, every randomization was equally likely
under the null hypothesis. But if this is not true, some
randomizations of the data would have been more or less
likely if the null hypothesis is true (see Hayes 1996a, for
an example) so scores cannot just be randomly reassigned
to the groups when the test is conducted. The result can
be an inaccurate P value and therefore potentially an
incorrect decision about the null hypothesis.

Anyone familiar with the performance of the pooled-
variance independent groups t test in the presence of
violations of the homoscedasticity assumption will recog-
nize the results in Tables 1 and 2. With the exception of
the invariance of type I error rate to absolute sample size
and population shape, the t test performs identically. So
long as the sample size in the two groups is similar, the
independent groups t test is valid except when the test
variable is extremely skewed. If there are differences in
variance combined with differences in sample size, the t
test is conservative when the larger group has the larger
variance, and liberal when the smaller group has the
larger variance (see e.g. Boneau 1960). Thus, the random-
ization test described by Adams & Anthony (1996) offers
nothing over the t test except for the elimination of the
normality assumption. (Hayes 1996a, illustrates the same
phenomenon when testing a null hypothesis about zero
correlation with a randomization test.) This is of course
one important advantage of randomization tests. Unlike
Adams & Anthony (1996) and Thomas & Poulin (1997)
suggest, however, the randomization test is not neces-
sarily a complete solution to problems produced by the
violation of assumptions in the t or ANOVA context.

The primary problem with the randomization test pro-
cedure described by Adams & Anthony (1996) is that the
test statistic used is sensitive to effects other than the one
of interest. When comparing means, SSt, F, or t or the
mean difference (when there are only two groups) all are
sensitive to differences in group variance and distribution
shape as well as differences in mean. As a result, a
randomization test using one of these test statistics tests
the null hypothesis that the group distributions are iden-
tical in shape and variability as well as location, other
than expected random variation. Mielke & Berry (1994)
suggest a randomization-based method that they report
can validly test for mean differences in the presence of
group variance heterogeneity, but little is known about
how their procedure actually performs. Currently, there
are no perfect solutions to the difficulties produced by
variance heterogeneity when comparing group means,
although several methods are promising (e.g. Alexander
& Govern 1994; Efron & Tibshirani 1998, page 223;
Zimmerman & Zumbo 1992; unpublished data).

Still, there are many advantages of randomization tests.
They are still quite useful and offer some conceptual and
practical advantages when sample sizes are small and the
distributions highly skewed. Randomization tests, like
other resampling-based methods such as the bootstrap,
do not require an assumption-constrained sampling
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distribution in order to generate probabilities, and they
are useful in situations where no known sampling
distribution exists for the statistic used to quantify the
effect of interest. And unlike traditional inferential pro-
cedures, randomization tests are not based on the tra-
ditional concept of random sampling from known
populations (cf. Edgington 1966). They thus seem con-
ceptually better suited to many of the kinds of research
designs that experimental scientists use most frequently.
But they are not a panacea to assumption violations.
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