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What does this document provide? What type of model does it address?
This document outlines simulations to conduct power analysis for one of the simplest model types that consider
random effects: random effects specified as random intercepts. In lmer() (and some other packages,
too), we specify such random effects as (1|our.random.effect), where our.random.effect indicates the
categorical variable modeled as a random effect. Models that include both random effects and fixed effects are
termed mixed effects models; models with only random effects are random effects models. (General
(or Generalized) linear models with only fixed effects are simply ‘General (Generalized) linear models’.)

This document will:

• briefly introduce the variance components and their structure for an experiment with one factor, modeled
as a fixed effect, and one random effect, modeled as random intercepts. We focus on General Linear
Models (i.e., we assume normally distributed residuals).

• illustrate power analysis for this experimental design, employing random intercepts.

Note that we will consider power analyses for alternative random effects models in other
documents (e.g., modeling random slopes).

Our example experiment
Our example experiment includes one factor (with three levels), modeled as a fixed effect, and one random
effect. Imagine that we designed this experiment to test the effect of a drug on several genotypes of an organism
(the organism could be a plant, mammal, fungus; it does not matter). We call our fixed effect, Treatment,
and specify three levels: an unmanipulated treatment (baseline), a placebo treatment, (placebo), and a
drug treatment (drug). We term the random effect, Genotype, which can have many levels; each level has a
unique number, with the prefix geno appended (see below), which reminds us that Genotype is a factor.

Some additional details:

• In our experiment, each Genotype experiences all three levels of Treatment;
• Within each level of Treatment, we obtain multiple measurements for each Genotype. Here, we imagine

that each measurement of a given Genotype within a given level of Treatment arose from a separate
individual. (Note that, if we obtained multiple measurements from individual subjects within a Genotype,
our analysis should likely account for this additional level of non-independence, e.g., include a second
random effect term, Subject. Our simpler design avoids this complication.)

• We assume that our experiment has no additional sources of non-independence (e.g., subjects inhabiting
shared cages, shared food sources, etc.).

Let’s look at the structure of these data
If we were to plot the structure of data from our experiment, what would it look like? To answer this question,
let’s begin with a simpler experiment: a one-factor (3 level) experiment with no random effects. We illustrate
the data structure and variance components in the plot, below.
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This plot illustrates an experiment with one factor with three levels (treatments); the levels are labelled, A, B,
and C. The experiment involves 9 measurements (the points) within each of the three treatments. The three,
black horizontal lines represent the average values of data within each treatment. The differences among
these mean values represent the first source of variance in our data: variance due to treatment effects. The
dotted, vertical lines highlight the differences between each measurement and the mean of its associated
treatment: these differences are the model ‘residuals’, and represent the second source of variance in our data
(residual or unexplained variance).

How does this picture change if we add a random effect (modeled as random intercepts)? The figure, below,
illustrates this additional source of variance. Note the similarity to our previous figure, immediately above:
both involve experiments with one factor with three levels (i.e., three treatments), and both involve 9
measurements per treatment level. We also see variation among the Treatment levels, signifying variance
due to treatment effects. Two primary differences arise between the plots:

• Below, we now see coloured, horizonal lines: these represent the random effects. Specifically, the three
colours (red, blue and green) represent three levels of our random effect; i.e., three genotypes. Recall
from our experimental design that each level of Genotype (red, blue, green) appears in each Treatment
level (baseline, placebo, drug): this explains why each Genotype level appears in each Treatment
level. Now, the important part: the differences between each Genotype level and the Treatment levels,
indicated by the vertical, dashed, coloured lines, highlights a new source of variance in our data: variance
associated with the random effect, Genotype. (Please note that an experiment like this should ideally
have more Genotype levels than illustrated here; we show only three Genotype levels to simplify the
figure.)

• Like the plot, above, the plot, below, also illustrates residual variance (i.e., the vertical, dotted, black
lines that connect to the points). However, the residual variance, below, occurs as variation in the
difference between a measurement and value of its associated Genotype level, rather than the difference
between a measurement and its associated Treatment level, as we saw, above.

We incorporate these differences associated with the presence of a random effect in our simulation, below.
First, we simulate variance due to random effects around Treatment levels, then we simulate additional
residual variance around Genotype levels.
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Please note:

• by modelling the random effects via random intercepts, we impose constraints on the data: (i) the
variance associated with Genotype is identical among Treatment levels, and (ii) and responses by
Genotype levels are identical among levels of Treatment. These constraints are reflected in the fact
that the difference between each Genotype level and each Treatment level is identical for all three
Treatment levels.

• this structure / model of random effects, despite the fact that it is commonly used to model data (it is
the default for some software), may not be biologically realistic. Therefore, it is important to realize
that alternative structures / models for the random effects are available. For example, it may be more
realistic for variance among levels of Genotype to differ among Treatment levels. We will deal with
some of these alternative random effects structures elsewhere.

Simulating a single dataset
Overall, our approach to conduct power analysis for mixed effects models is identical to what we’ve seen
previously with other analyses: we simulate data, extract and store our criterion for an experiment’s success
(e.g., p-value or SE for effect size), and repeat. The only prominent differences involve adding a random effect
to our data and the function to conduct the analysis (e.g., using lmer() or another similar function rather
than lm()). We will follow these steps to generate code for our power analysis:

• simulate a single dataset;
• analyze this dataset to test whether we simulated the data correctly. If the results of the analysis match

our expectations based on how (we believed) we simulated the data, then we gain confidence that our
code simulates data correctly.

• apply this code to generate many datasets, analyse each one, and extract and save the the criterion by
which we judge the simulated experiment’s success (e.g., p-value); i.e., conduct a power analysis.

Before we generate our first dataset, please note that:

• R purists will be rather horrified by our code, as it is not as elegant as it could be. We use relatively
simple code to communicate the stages of the simulations as clearly as possible, rather than to teach
efficient and concise coding.

• we assume that you have seen our previous files that illustrated power analyses via simulations. As a
result, we assume you will be familiar with most of the code and we will provide little explanation of
how the code works. Instead, we focus on what we need code to accomplish.
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Let’s begin by creating parameters that describe our experimental design. Recall that Treatment has three
levels: baseline, placebo and drug. We obtain measurements from each Genotype in all three Treatment
levels. How many levels of (i.e., types of) Genotype will our experiment involve? Let’s specify the number of
Genotypes as:
no.Genotype <- 200

Here, we’re imagining that we have 200 Genotypes. Is this realistic for a real experiment? That depends on
the experiment. A recent GWAS study of cattle used about 58,000 bulls (genotypes). Biomedical science
often uses a handful of genotypes. Our goal here is to use a sufficiently large dataset to provide a strong test
of our code (via analysing the data, below); 200 should be sufficient.

We said earlier that we will obtain multiple measurements per Genotype per Treatment level. How many?
Let’s specify this number via:
reps.per.Genotype.per.level <- 10

We now can determine the total number of measurements in our experiment: we have 200 levels of Genotype,
each of which experience each of 3 levels of Treatment 10 times. Therefore, our total number of measurements
equals 200*3*10 = 6000.

We need a vector to store the identity Genotype levels for which we will simulate data. Each Genotype level
will have 3*10 = 30 measurements. Recall that we specify each Genotype level with a number (to which we
will add the prefix, geno). As we have 200 Genotype levels, and each level is repeated 30 times, we can use
the following code to generate a sequence of numbers from 1 to 200, where each number is repeated 30 times:
Genotype <- rep(1:no.Genotype, each=3*reps.per.Genotype.per.level)

We can append geno to these numbers using the paste() function:
Genotype <- paste("geno",Genotype, sep = "")

Let’s check our work. How many entries are in Genotype?
length(Genotype)

## [1] 6000

Just as we expected! Let’s look at the first 100 entries, to check that our code works properly:
Genotype[1:100]

## [1] "geno1" "geno1" "geno1" "geno1" "geno1" "geno1" "geno1" "geno1" "geno1"
## [10] "geno1" "geno1" "geno1" "geno1" "geno1" "geno1" "geno1" "geno1" "geno1"
## [19] "geno1" "geno1" "geno1" "geno1" "geno1" "geno1" "geno1" "geno1" "geno1"
## [28] "geno1" "geno1" "geno1" "geno2" "geno2" "geno2" "geno2" "geno2" "geno2"
## [37] "geno2" "geno2" "geno2" "geno2" "geno2" "geno2" "geno2" "geno2" "geno2"
## [46] "geno2" "geno2" "geno2" "geno2" "geno2" "geno2" "geno2" "geno2" "geno2"
## [55] "geno2" "geno2" "geno2" "geno2" "geno2" "geno2" "geno3" "geno3" "geno3"
## [64] "geno3" "geno3" "geno3" "geno3" "geno3" "geno3" "geno3" "geno3" "geno3"
## [73] "geno3" "geno3" "geno3" "geno3" "geno3" "geno3" "geno3" "geno3" "geno3"
## [82] "geno3" "geno3" "geno3" "geno3" "geno3" "geno3" "geno3" "geno3" "geno3"
## [91] "geno4" "geno4" "geno4" "geno4" "geno4" "geno4" "geno4" "geno4" "geno4"
## [100] "geno4"

That looks right!

We will now generate data for each level of Genotype, one at a time. (We recognize that this is not the most
efficient approach, but we hope it is clear.)

We will generate our measurements (our ‘data’) in several steps, and will store these results in a vector
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named, Measurements. (We keep the nature of our measurements general to allow the reader to imagine
many different experiments.) Recall, from our description of random effects above, that the value of each
level of Genotype lies some distance from each Treatment level, and these distances are normally distributed.
Therefore, as our first step to simulate Measurements, we will simulate the distances that Genotype levels lie
from Treatment means. To do so, let’s first specify the mean values for each Treatment level:
baseline.mean = 10
placebo.mean = 12
drug.mean = 20

These mean values suggest that the placebo will differ slightly from baseline, but the drug will differ more
substantially.

The differences between Genotype levels and the mean values of Treatment levels will be normally distributed
with a mean of zero and a standard deviation of:
sd.genotype <- 5

With this in mind, we can simulate the difference between a single Genotype level and the mean of Treatment
levels using the following code. Notice that we also create a new vector that stores the Treatment level:
#We create a vector that stores Treatment level
Treatment <- c()
Treatment <- append(Treatment, c(rep("baseline",reps.per.Genotype.per.level),

rep("placebo",reps.per.Genotype.per.level),
rep("drug",reps.per.Genotype.per.level)))

#We create a vector that stores Measurements
Measurements <- c()
means.vector <- c(rep(baseline.mean,reps.per.Genotype.per.level),

rep(placebo.mean,reps.per.Genotype.per.level),
rep(drug.mean,reps.per.Genotype.per.level))

random.effects <- c(rep(rnorm(1,0,sd.genotype),3*reps.per.Genotype.per.level))
Measurements <- append(Measurements, means.vector+random.effects)

Now, let’s see what we have generated for a single Genotype level:
Measurements

## [1] 12.11826 12.11826 12.11826 12.11826 12.11826 12.11826 12.11826 12.11826
## [9] 12.11826 12.11826 14.11826 14.11826 14.11826 14.11826 14.11826 14.11826
## [17] 14.11826 14.11826 14.11826 14.11826 22.11826 22.11826 22.11826 22.11826
## [25] 22.11826 22.11826 22.11826 22.11826 22.11826 22.11826

Excellent! Notice that the difference between each value and the mean for the respective Treatment level is
consistent for all Treatment levels. This matches our description of a random intercepts model, above.

Now we must repeat this process for all Genotype levels. We will do so using for() loops:
#We create a vector that stores Treatment level
Treatment <- c()
#We populate that vector for the entire length of the dataset:
for(i in 1:no.Genotype){

Treatment <- append(Treatment, c(rep("baseline",reps.per.Genotype.per.level),
rep("placebo",reps.per.Genotype.per.level),
rep("drug",reps.per.Genotype.per.level)))

}
#We create a vector that stores Measurements
Measurements <- c()
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#We populate this vector with means + random deviations for the whole dataset:
for(i in 1:no.Genotype){

means.vector <- c(rep(baseline.mean,reps.per.Genotype.per.level),
rep(placebo.mean,reps.per.Genotype.per.level),
rep(drug.mean,reps.per.Genotype.per.level))

random.effects <- c(rep(rnorm(1,0,sd.genotype),3*reps.per.Genotype.per.level))
Measurements <- append(Measurements, means.vector+random.effects)

}

Let’s check our work by examining the first 100 entries of Treatment and Measurements:
Treatment[1:100]

## [1] "baseline" "baseline" "baseline" "baseline" "baseline" "baseline"
## [7] "baseline" "baseline" "baseline" "baseline" "placebo" "placebo"
## [13] "placebo" "placebo" "placebo" "placebo" "placebo" "placebo"
## [19] "placebo" "placebo" "drug" "drug" "drug" "drug"
## [25] "drug" "drug" "drug" "drug" "drug" "drug"
## [31] "baseline" "baseline" "baseline" "baseline" "baseline" "baseline"
## [37] "baseline" "baseline" "baseline" "baseline" "placebo" "placebo"
## [43] "placebo" "placebo" "placebo" "placebo" "placebo" "placebo"
## [49] "placebo" "placebo" "drug" "drug" "drug" "drug"
## [55] "drug" "drug" "drug" "drug" "drug" "drug"
## [61] "baseline" "baseline" "baseline" "baseline" "baseline" "baseline"
## [67] "baseline" "baseline" "baseline" "baseline" "placebo" "placebo"
## [73] "placebo" "placebo" "placebo" "placebo" "placebo" "placebo"
## [79] "placebo" "placebo" "drug" "drug" "drug" "drug"
## [85] "drug" "drug" "drug" "drug" "drug" "drug"
## [91] "baseline" "baseline" "baseline" "baseline" "baseline" "baseline"
## [97] "baseline" "baseline" "baseline" "baseline"
Measurements[1:100]

## [1] 10.565830 10.565830 10.565830 10.565830 10.565830 10.565830 10.565830
## [8] 10.565830 10.565830 10.565830 12.565830 12.565830 12.565830 12.565830
## [15] 12.565830 12.565830 12.565830 12.565830 12.565830 12.565830 20.565830
## [22] 20.565830 20.565830 20.565830 20.565830 20.565830 20.565830 20.565830
## [29] 20.565830 20.565830 7.476926 7.476926 7.476926 7.476926 7.476926
## [36] 7.476926 7.476926 7.476926 7.476926 7.476926 9.476926 9.476926
## [43] 9.476926 9.476926 9.476926 9.476926 9.476926 9.476926 9.476926
## [50] 9.476926 17.476926 17.476926 17.476926 17.476926 17.476926 17.476926
## [57] 17.476926 17.476926 17.476926 17.476926 5.341830 5.341830 5.341830
## [64] 5.341830 5.341830 5.341830 5.341830 5.341830 5.341830 5.341830
## [71] 7.341830 7.341830 7.341830 7.341830 7.341830 7.341830 7.341830
## [78] 7.341830 7.341830 7.341830 15.341830 15.341830 15.341830 15.341830
## [85] 15.341830 15.341830 15.341830 15.341830 15.341830 15.341830 11.832092
## [92] 11.832092 11.832092 11.832092 11.832092 11.832092 11.832092 11.832092
## [99] 11.832092 11.832092

Convince yourself that this output is correct. (Because it is!)

So far, our data in Measurments only includes information about Treatment means and variation due to
random effect: we need to add residual variation to complete our simulation of these data. We’ll do this
by drawing as many random numbers from a normal distribution as we have data points in our experiment
(3*no.Genotype*reps.per.Genotype.per.level = 6000). The random numbers will have a mean of zero
and a standard deviation equal to:
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sd.residual <- 10

We will draw these random numbers and add them to the values already stored in Measurements to complete
our simulation of these data:
Measurements <- Measurements + rnorm(3*no.Genotype*reps.per.Genotype.per.level, 0, sd.residual)

Let’s now look at the first 100 values in Measurments to see what we did:
Measurements[1:100]

## [1] -3.76505903 23.68884113 13.32309805 -0.03334066 6.54333621
## [6] 19.16131558 12.22296277 7.35262469 9.69582077 20.25492192
## [11] 5.48828278 6.68890190 11.28950844 6.69762482 9.11171673
## [16] 15.76604179 10.00128917 3.44973908 25.31150921 -3.05517210
## [21] 38.47962441 20.06225942 13.90155685 12.11300832 13.04022566
## [26] 11.36097272 36.66968407 25.70556619 11.87166611 23.18170081
## [31] 7.47587396 5.21261073 25.82798783 10.62452912 -4.70754728
## [36] -0.47028246 -13.26887836 14.98627064 3.21160771 -11.30775877
## [41] 21.88311079 28.35612908 11.26439191 25.70285869 21.78524652
## [46] 8.58786638 16.66986788 4.49153909 7.85092582 -2.23790870
## [51] 23.53308106 11.68613990 2.66270545 9.68727775 5.02881016
## [56] 29.68338948 29.36039847 19.77734401 27.92331062 27.28133552
## [61] -11.27121757 7.91932386 23.98255840 3.44547407 -9.49847163
## [66] 1.22394438 4.75957303 10.72402465 0.79850397 -4.21877339
## [71] -2.05161914 -8.64328009 6.81538404 31.31342507 9.44092082
## [76] -1.37557813 -8.49862489 13.09210883 -1.87980883 -6.77273250
## [81] 15.76752799 21.50901088 10.49531415 26.31603104 -9.39837893
## [86] 10.64445277 10.40634878 30.72880002 5.44570753 7.61617094
## [91] -1.50908625 -5.47137536 2.03992353 4.33352841 6.78053055
## [96] 11.78634299 9.59399458 6.50836935 0.30829546 21.43795733

Notice how the contents of Measurements has changed: individual values are no longer identical due to the
addition of residual variation.

Analyzing our simulated dataset
Now, we have simulated a single dataset and we are almost ready to analyze these data to ensure we simulated
the data correctly. First, let’s collect all of our relevant code and put it in one place to help us see what we
have done:
#Define parameters:
no.Genotype <- 200
reps.per.Genotype.per.level <- 10

#Define mean values and variation for random effect and residuals
baseline.mean = 10
placebo.mean = 12
drug.mean = 20
sd.genotype <- 5
sd.residual <- 10

#Create vector with Genotype:
Genotype <- rep(1:no.Genotype, each=3*reps.per.Genotype.per.level)
Genotype <- paste("geno",Genotype, sep = "")

#We create a vector that stores Treatment level
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Treatment <- c()
#We populate that vector for the entire length of the dataset:
for(i in 1:no.Genotype){

Treatment <- append(Treatment, c(rep("baseline",reps.per.Genotype.per.level),
rep("placebo",reps.per.Genotype.per.level),
rep("drug",reps.per.Genotype.per.level)))

}

#We create a vector that stores Measurements
Measurements <- c()
#We populate this vector with means + random deviations for the whole dataset:
for(i in 1:no.Genotype){

means.vector <- c(rep(baseline.mean,reps.per.Genotype.per.level),
rep(placebo.mean,reps.per.Genotype.per.level),
rep(drug.mean,reps.per.Genotype.per.level))

random.effects <- c(rep(rnorm(1,0,sd.genotype),3*reps.per.Genotype.per.level))
Measurements <- append(Measurements, means.vector+random.effects)

}

Measurements <- Measurements + rnorm(3*no.Genotype*reps.per.Genotype.per.level, 0, sd.residual)

Now, let’s analyze the data. We’ll use lmer() in the lme4 library (and the lmerTest library, which will
generate p-values for us). We open the libraries, create our model, and examine the output like this:
library(lme4)

## Loading required package: Matrix
library(lmerTest)

##
## Attaching package: 'lmerTest'

## The following object is masked from 'package:lme4':
##
## lmer

## The following object is masked from 'package:stats':
##
## step
check.sims <- lmer(Measurements ~ Treatment + (1|Genotype))

summary(check.sims)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Measurements ~ Treatment + (1 | Genotype)
##
## REML criterion at convergence: 45309.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.8366 -0.6553 -0.0108 0.6727 3.8501
##
## Random effects:
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## Groups Name Variance Std.Dev.
## Genotype (Intercept) 30.38 5.512
## Residual 103.33 10.165
## Number of obs: 6000, groups: Genotype, 200
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 9.4769 0.4512 287.9029 21.005 < 2e-16 ***
## Treatmentdrug 9.9888 0.3215 5798.0000 31.074 < 2e-16 ***
## Treatmentplacebo 2.4631 0.3215 5798.0000 7.662 2.13e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Trtmntd
## Treatmntdrg -0.356
## Tretmntplcb -0.356 0.500

Our output indicates that our simulation worked correctly, based on (i) the estimates of standard deviation
(for random effects and residuals) and (ii) the estimated mean values for the Treatment levels. First, examine
the estimates of standard deviation, provided in the output under Random effects:. You will find two
rows, labelled Genotype (Intercept) and Residual. The values on the far-right of these rows (under
Std.Dev.) provide the model estimates of the standard deviation for our random effect (Genotype) and
the residuals: notice that these estimates closely match the values we specified (5 and 10, respectively).
Next, examine the Estimate values under Fixed effects (these are the model coefficients). The first row
(labeled (Intercept)) provides the estimate of the mean for the baseline level: notice that its value under
Estimate is very close to the value of 10 that we specified. The Estimate values in the second and third
rows indicate the differences between the mean drug and placebo, respectively, vs. the mean of baseline.
Recall that we specified the means of drug and placebo as 20 and 12, respectively, so the differences between
these means and the mean of baseline will equal 10 and 2, respectively. Again, notice how closely these
values match the Estimates. This close match between our model estimates and our expectations suggest
that we have simulated the data effectively.

Conduct power analysis
We are now in a position to conduct our power analysis! The overall approach is identical to what we’ve
seen before: simulate many datasets and, for each dataset, perform an analysis and record our criterion of
‘success’. Following convention, our example power analysis will obtain the p-value for the overall effect of
Treatment and test whether it is less than 0.05. Below, we remind you of other approaches.

Our power analysis will use larger variances for random effects and residuals, as well as fewer Genotype
levels and fewer reps.per.Genotype.per.level than we used, above, to obtain statistical power consistent
with what’s commonly desired in the literature (our simulated data, above, where no.Genotype equaled 200,
would have very high power).
#Open libraries:
library(lme4)
library(lmerTest)

#Define parameters:
no.Genotype <- 25
reps.per.Genotype.per.level <- 4

#Define mean values and variation for random effect and residuals
baseline.mean = 10
placebo.mean = 12
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drug.mean = 20
sd.genotype <- 15
sd.residual <- 25

#Define the number of data simulations:
n.sims <- 1000
p.less005.counter <- 0

#Create vector with Genotype:
Genotype <- rep(1:no.Genotype, each=3*reps.per.Genotype.per.level)
Genotype <- paste("geno",Genotype, sep = "")

#We create a vector that stores Treatment level
Treatment <- c()
#We populate that vector for the entire length of the dataset:
for(i in 1:no.Genotype){

Treatment <- append(Treatment, c(rep("baseline",reps.per.Genotype.per.level),
rep("placebo",reps.per.Genotype.per.level),
rep("drug",reps.per.Genotype.per.level)))

}

#It is only the part of the data-simulation process, below, that must be repeated many times.

for(i in 1:n.sims){
#We create a vector that stores Measurements
Measurements <- c()
#We populate this vector with means + random deviations for the whole dataset:
for(i in 1:no.Genotype){

means.vector <- c(rep(baseline.mean,reps.per.Genotype.per.level),
rep(placebo.mean,reps.per.Genotype.per.level),
rep(drug.mean,reps.per.Genotype.per.level))

random.effects <- c(rep(rnorm(1,0,sd.genotype),3*reps.per.Genotype.per.level))
Measurements <- append(Measurements, means.vector+random.effects)
}

Measurements <- Measurements + rnorm(3*no.Genotype*reps.per.Genotype.per.level, 0, sd.residual)
#Analyze the data:
sim.lmer <- lmer(Measurements ~ Treatment + (1|Genotype))
#Obtain p-value, and increment counter if p < 0.05:
if(anova(sim.lmer)[1,6] < 0.05) {p.less005.counter <- p.less005.counter + 1}

}

print(paste("power = ",(p.less005.counter/n.sims)))

## [1] "power = 0.794"

A few last words on ways to expand on this approach
We end with a few suggestions to expand on the methods demonstrated, above.

• We have demonstrated power analysis for one focal experimental design. We can conduct power analyses
for similar, but non-identical experimental designs in a similar manner we used here, by altering the
structure of the data to reflect the alternative experimental design. For example, if each Genotype
level occurred within one Treatment level only (as opposed occurring in all three Treatment levels), we
would alter the simulations to specify a mean for each Genotype level within a single Treatment level,
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only. Indeed, we can use the methods illustrated, above, for any experimental design (e.g., multiple
factors, covariates and random effects), so long as we simulate the data accordingly.

• Note that a variety of methods exist to obtain p-values for mixed effects models. The approach used,
above, has been shown to be anti-conservative, and other methods are preferable. For example, the
function, PBmodcomp (in the pbkrtest library) uses parametric bootstrapping to generate p-values,
which are more accurate (see Halekoh and Højsgaard (2014), A Kenward-Roger Approximation and
Parametric Bootstrap Methods for Tests in Linear Mixed Models – The R Package pbkrtest). Note,
however, that parametric bootstrapping is much slower and so was avoided, here.

• Our power analysis, above, focused on a p-value for an overall effect of Treatment. We might, instead,
wish to base the power analysis on p-values from post-hoc comparisons (e.g., Tukey test). We can use
the same approach to do so with mixed effects models as we illustrated previously with 1-factor general
linear models.

• We used p-values to judge the ‘success’ of simulated experiments. Alternatively, we can base ‘success’
upon the precision with which we estimate an effect size. We used this approach in our discussion of
power analysis for 1-factor GLM (where we used the Standard Error of an effect size to assess ‘success’),
and we can use an identical approach with mixed effects models.

Enjoy!
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